import streamlit as st from transformers import pipeline from PIL import Image import requests from io import BytesIO # Set page configuration st.set_page_config( page_title="Age Group Classification", page_icon="πŸ‘ΆπŸ‘§πŸ‘©πŸ‘΅", layout="centered" ) # Add title and description st.title("Age Group Classification") st.markdown("Upload an image of a person to classify their approximate age group using the `nateraw/vit-age-classifier` model.") @st.cache_resource def load_model(): """Load the age classification model and cache it.""" return pipeline("image-classification", model="nateraw/vit-age-classifier") def load_image_from_url(url): """Load an image from a URL.""" response = requests.get(url) img = Image.open(BytesIO(response.content)) return img # Load the model pipe = load_model() # Create file uploader uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Function to get top prediction def get_top_prediction(predictions): # Get the prediction with highest confidence top_prediction = max(predictions, key=lambda x: x['score']) return top_prediction # Process the image and display results if uploaded_file is not None: # Process uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_container_width=True) with st.spinner("Analyzing age..."): predictions = pipe(image) top_pred = get_top_prediction(predictions) # Display result st.markdown("### Result:") st.metric( label="Predicted Age Range", value=top_pred['label'], delta=f"Confidence: {top_pred['score']:.2%}" ) elif 'example_loaded' in st.session_state and st.session_state.example_loaded: # Process example image with st.spinner("Loading example image..."): # Download and load the image properly image = load_image_from_url(st.session_state.example_image) st.image(image, caption="Example Image", use_container_width=True) with st.spinner("Analyzing age..."): # Pass the actual PIL Image object to the pipeline predictions = pipe(image) top_pred = get_top_prediction(predictions) # Display result st.markdown("### Result:") st.metric( label="Predicted Age Range", value=top_pred['label'], delta=f"Confidence: {top_pred['score']:.2%}" ) # Add information about the model st.markdown("---") st.markdown("### About the Model") st.markdown(""" This app uses the `nateraw/vit-age-classifier` model from Hugging Face, which classifies images into age groups like "0-2", "3-9", "10-19", etc. The app displays only the most likely age range prediction with its confidence score. """)