Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -49,6 +49,12 @@ with col2:
|
|
49 |
st.session_state.example_image = EXAMPLE_2
|
50 |
st.session_state.example_loaded = True
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Process the image and display results
|
53 |
if uploaded_file is not None:
|
54 |
# Process uploaded image
|
@@ -57,12 +63,15 @@ if uploaded_file is not None:
|
|
57 |
|
58 |
with st.spinner("Analyzing age..."):
|
59 |
predictions = pipe(image)
|
|
|
60 |
|
61 |
-
# Display
|
62 |
-
st.markdown("###
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
elif 'example_loaded' in st.session_state and st.session_state.example_loaded:
|
68 |
# Process example image
|
@@ -74,18 +83,21 @@ elif 'example_loaded' in st.session_state and st.session_state.example_loaded:
|
|
74 |
with st.spinner("Analyzing age..."):
|
75 |
# Pass the actual PIL Image object to the pipeline
|
76 |
predictions = pipe(image)
|
|
|
77 |
|
78 |
-
# Display
|
79 |
-
st.markdown("###
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
# Add information about the model
|
85 |
st.markdown("---")
|
86 |
st.markdown("### About the Model")
|
87 |
st.markdown("""
|
88 |
This app uses the `nateraw/vit-age-classifier` model from Hugging Face, which classifies
|
89 |
-
images into age groups like "0-2", "3-9", "10-19", etc. The
|
90 |
-
|
91 |
""")
|
|
|
49 |
st.session_state.example_image = EXAMPLE_2
|
50 |
st.session_state.example_loaded = True
|
51 |
|
52 |
+
# Function to get top prediction
|
53 |
+
def get_top_prediction(predictions):
|
54 |
+
# Get the prediction with highest confidence
|
55 |
+
top_prediction = max(predictions, key=lambda x: x['score'])
|
56 |
+
return top_prediction
|
57 |
+
|
58 |
# Process the image and display results
|
59 |
if uploaded_file is not None:
|
60 |
# Process uploaded image
|
|
|
63 |
|
64 |
with st.spinner("Analyzing age..."):
|
65 |
predictions = pipe(image)
|
66 |
+
top_pred = get_top_prediction(predictions)
|
67 |
|
68 |
+
# Display result
|
69 |
+
st.markdown("### Result:")
|
70 |
+
st.metric(
|
71 |
+
label="Predicted Age Range",
|
72 |
+
value=top_pred['label'],
|
73 |
+
delta=f"Confidence: {top_pred['score']:.2%}"
|
74 |
+
)
|
75 |
|
76 |
elif 'example_loaded' in st.session_state and st.session_state.example_loaded:
|
77 |
# Process example image
|
|
|
83 |
with st.spinner("Analyzing age..."):
|
84 |
# Pass the actual PIL Image object to the pipeline
|
85 |
predictions = pipe(image)
|
86 |
+
top_pred = get_top_prediction(predictions)
|
87 |
|
88 |
+
# Display result
|
89 |
+
st.markdown("### Result:")
|
90 |
+
st.metric(
|
91 |
+
label="Predicted Age Range",
|
92 |
+
value=top_pred['label'],
|
93 |
+
delta=f"Confidence: {top_pred['score']:.2%}"
|
94 |
+
)
|
95 |
|
96 |
# Add information about the model
|
97 |
st.markdown("---")
|
98 |
st.markdown("### About the Model")
|
99 |
st.markdown("""
|
100 |
This app uses the `nateraw/vit-age-classifier` model from Hugging Face, which classifies
|
101 |
+
images into age groups like "0-2", "3-9", "10-19", etc. The app displays only the most
|
102 |
+
likely age range prediction with its confidence score.
|
103 |
""")
|