franchesoni's picture
add watershed
9754079
raw
history blame contribute delete
9.54 kB
from PIL import Image
import torch
import numpy as np
import gradio as gr
from pathlib import Path
from busam import Busam
resize_to = 512
checkpoint = "weights.pth"
device = "cpu"
print("Loading model...")
busam = Busam(checkpoint=checkpoint, device=device, side=resize_to)
minmaxnorm = lambda x: (x - x.min()) / (x.max() - x.min())
def edge_inference(img, algorithm, th_low=None, th_high=None):
algorithm = algorithm.lower()
print("Loading image...")
img = np.array(img[:, :, :3])
print("Getting features...")
pred, size = busam.process_image(img, do_activate=True)
print("Computing sobel...")
if algorithm == "sobel":
edge = busam.sobel_from_pred(pred, size)
elif algorithm == "canny":
th_low, th_high = th_low or 5000, th_high or 10000
edge = busam.canny_from_pred(pred, size, th_low=th_low, th_high=th_high)
else:
raise ValueError("algorithm should be sobel or canny")
edge = edge.cpu().numpy() if isinstance(edge, torch.Tensor) else edge
print("Done")
return Image.fromarray(
(minmaxnorm(edge) * 255).astype(np.uint8)
).resize(size[::-1])
def dimred_inference(
img,
algorithm,
resample_pct,
):
algorithm = algorithm.lower()
img = np.array(img[:, :, :3])
print("Getting features...")
pred, size = busam.process_image(img, do_activate=True)
# pred is 1, F, S, S
assert pred.shape[1] >= 3, "should have at least 3 channels"
if algorithm == 'pca':
from sklearn.decomposition import PCA
reducer = PCA(n_components=3)
elif algorithm == 'tsne':
from sklearn.manifold import TSNE
reducer = TSNE(n_components=3)
elif algorithm == 'umap':
from umap import UMAP
reducer = UMAP(n_components=3)
else:
raise ValueError('algorithm should be pca, tsne or umap')
np_y_hat = pred.detach().cpu().permute(1, 0, 2, 3).numpy() # F, B, H, W
np_y_hat = np_y_hat.reshape(np_y_hat.shape[0], -1) # F, BHW
np_y_hat = np_y_hat.T # BHW, F
resample_pct = 10**resample_pct
resample_size = int(resample_pct * np_y_hat.shape[0])
sampled_pixels = np_y_hat[:: np_y_hat.shape[0] // resample_size]
print("dim reduction fit..." + " " * 30, end="\r")
reducer = reducer.fit(sampled_pixels)
print("dim reduction transform..." + " " * 30, end="\r")
reducer.transform(np_y_hat[:10]) # to numba compile the function
np_y_hat = reducer.transform(np_y_hat) # BHW, 3
print()
print('Done. Saving...')
# revert back to original shape
colors = np_y_hat.reshape(pred.shape[2], pred.shape[3], 3)
return Image.fromarray((minmaxnorm(colors) * 255).astype(np.uint8)).resize(
size[::-1]
)
def segmentation_inference(img, algorithm, scale):
algorithm = algorithm.lower()
img = np.array(img[:, :, :3])
print("Getting features...")
pred, size = busam.process_image(img, do_activate=True)
print("Computing segmentation...")
if algorithm == "kmeans":
from sklearn.cluster import KMeans
n_clusters = int(100 / 100**scale)
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(
pred.view(pred.shape[1], -1).T
)
labels = kmeans.labels_
labels = labels.reshape(pred.shape[2], pred.shape[3])
elif algorithm == "felzenszwalb":
from skimage.segmentation import felzenszwalb
labels = felzenszwalb(
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0),
scale=10**(8*scale-3),
sigma=0,
min_size=50,
)
elif algorithm == "slic":
from skimage.segmentation import slic
labels = slic(
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0),
n_segments = int(100 / 100**scale),
compactness=0.00001,
sigma=1,
)
elif algorithm == 'watershed':
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from scipy import ndimage as ndi
sobel = busam.sobel_from_pred(pred, size)
sobel = sobel.cpu().numpy() if isinstance(sobel, torch.Tensor) else sobel
# contrast stretch sobel with 5% largest
sobel = np.clip(sobel / np.percentile(sobel, 95), 0, 1)
distance = ndi.distance_transform_edt(sobel < 1) # distance to the borders
coords = peak_local_max(distance, min_distance=int(1+100*scale), labels=sobel<1)
mask = np.zeros(sobel.shape, dtype=bool)
mask[tuple(coords.T)] = True
markers, _ = ndi.label(mask)
labels = watershed(sobel, markers)
else:
raise ValueError("algorithm should be kmeans, felzenszwalb or slic")
print("Done")
# the labels have values that are usually close to each other in the image and in magnitude, which complicates visualization
# shuffle the labels to make them more visually distinct
out = labels.copy()
out[labels % 4 == 0] = labels[labels % 4 == 0] * 1 / 4
out[labels % 4 == 1] = labels[labels % 4 == 1] * 4 // 4 + 1
out[labels % 4 == 2] = labels[labels % 4 == 2] * 2 // 4 + 2
out[labels % 4 == 3] = labels[labels % 4 == 3] * 3 // 4 + 3
return Image.fromarray(
(minmaxnorm(out) * 255).astype(np.uint8)
).resize(size[::-1])
def one_click_segmentation(img, row, col, threshold):
row, col = int(row), int(col)
img = np.array(img[:, :, :3])
click_map = np.zeros(img.shape[:2], dtype=bool)
side = min(img.shape[:2]) // 100
click_map[max(0, row-side):min(img.shape[0], row+side), max(0, col-side//5):min(img.shape[0], col+side//5)] = True
click_map[max(0, row-side//5):min(img.shape[0], row+side//5), max(0, col-side):min(img.shape[0], col+side)] = True
print("Getting features...")
pred, size = busam.process_image(img, do_activate=True)
print("Getting mask...")
mask = busam.get_mask((pred, size), (row, col))
print("Done")
print('shapes=', img.shape, mask.shape, click_map.shape)
return (img, [(mask, 'Prediction'), (click_map, 'Click')])
with gr.Blocks() as demo:
with gr.Tab('Edge detection'):
algorithm = "canny"
with gr.Row():
def enable_sliders(algorithm):
algorithm = algorithm.lower()
return gr.Slider(visible=algorithm == "canny"), gr.Slider(visible=algorithm == "canny")
with gr.Column():
image_input = gr.Image(label="Input Image")
run_button = gr.Button("Run")
algorithm = gr.Radio(["Sobel", "Canny"], label="Algorithm", value="Sobel")
# add sliders for th_low, th_high
th_low_slider = gr.Slider(0, 32768, 10000, label="Canny's low threshold", visible=False)
th_high_slider = gr.Slider(0, 32768, 20000, label="Canny's high threshold", visible=False)
algorithm.change(enable_sliders, inputs=[algorithm], outputs=[th_low_slider, th_high_slider])
with gr.Column():
output_image = gr.Image(label="Output Image")
run_button.click(edge_inference, inputs=[image_input, algorithm, th_low_slider, th_high_slider], outputs=output_image)
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)
with gr.Tab('Reduction to 3D'):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input Image")
algorithm = gr.Radio(["PCA", "TSNE", "UMAP"], label="Algorithm", value="PCA")
run_button = gr.Button("Run")
gr.Markdown("⚠️ UMAP is slow, TSNE is ULTRA-slow. They won't run on time. ⚠️")
resample_pct = gr.Slider(-5, 0, -3, label="Resample (10^x)*100%")
with gr.Column():
output_image = gr.Image(label="Output Image")
run_button.click(dimred_inference, inputs=[image_input, algorithm, resample_pct], outputs=output_image)
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)
with gr.Tab('Classical Segmentation'):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input Image")
algorithm = gr.Radio(['KMeans', 'Felzenszwalb', 'SLIC', 'Watershed'], label="Algorithm", value="SLIC")
scale = gr.Slider(0.1, 1.0, 0.5, label="Scale")
run_button = gr.Button("Run")
with gr.Column():
output_image = gr.Image(label="Output Image")
run_button.click(segmentation_inference, inputs=[image_input, algorithm, scale], outputs=output_image)
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)
with gr.Tab('One-click segmentation'):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input Image")
threshold = gr.Slider(0, 1, 0.5, label="Threshold")
with gr.Row():
row = gr.Textbox(10, label="Click's row")
col = gr.Textbox(10, label="Click's column")
run_button = gr.Button("Run")
with gr.Column():
output_image = gr.AnnotatedImage(label="Output")
run_button.click(one_click_segmentation, inputs=[image_input, row, col, threshold], outputs=output_image)
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)
demo.launch(share=False)