File size: 3,565 Bytes
e5f33ab
 
10e9b7d
950d883
eccf8e4
3c4371f
950d883
10e9b7d
e89ec77
e5f33ab
 
 
950d883
e89ec77
 
950d883
e5f33ab
e89ec77
950d883
 
e89ec77
950d883
e89ec77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
950d883
 
 
5f30ad7
e5f33ab
 
 
 
 
 
 
5f30ad7
950d883
 
 
 
 
e89ec77
950d883
e89ec77
e5f33ab
950d883
e89ec77
 
 
950d883
e89ec77
e5f33ab
950d883
e89ec77
950d883
e89ec77
 
 
 
950d883
e5628f9
5f30ad7
e5628f9
 
5f30ad7
950d883
 
 
 
e89ec77
950d883
 
 
 
 
 
 
5f30ad7
 
e89ec77
e80aab9
e89ec77
e5f33ab
 
 
 
950d883
 
 
 
e5f33ab
950d883
e80aab9
5f30ad7
950d883
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# app.py

import os
import time
import requests
import pandas as pd
import gradio as gr

# --- Config from Env ---
API_URL      = os.getenv("API_URL", "https://agents-course-unit4-scoring.hf.space")
MODEL_ID     = os.getenv("MODEL_ID", "meta-llama/Llama-2-7b-instruct")
HF_TOKEN_ENV = os.getenv("HUGGINGFACEHUB_API_TOKEN")

WELCOME = """
## GAIA Benchmark Runner 🎉

Build your agent, score **≥30%** to earn your Certificate,  
and see where you land on the Student Leaderboard!
"""

# --- Simple HF-Inference Agent ---
class GAIAAgent:
    def __init__(self, model_id: str, token: str):
        self.model_id = model_id
        self.headers = {"Authorization": f"Bearer {token}"}

    def answer(self, prompt: str) -> str:
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 512,
                "temperature": 0.2
            }
        }
        url = f"https://api-inference.huggingface.co/models/{self.model_id}"
        resp = requests.post(url, headers=self.headers, json=payload, timeout=60)
        resp.raise_for_status()
        data = resp.json()
        if isinstance(data, list) and data and "generated_text" in data[0]:
            return data[0]["generated_text"].strip()
        return str(data)

# --- Gradio callback ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    if profile is None:
        return "⚠️ Please log in with your Hugging Face account.", pd.DataFrame()
    username = profile.username
    hf_token = HF_TOKEN_ENV or getattr(profile, "access_token", None)
    if not hf_token:
        return (
            "❌ No Hugging Face token found.\n"
            "Set HUGGINGFACEHUB_API_TOKEN in Secrets or log in via the button.",
            pd.DataFrame()
        )

    # 1) Fetch GAIA questions
    q_resp = requests.get(f"{API_URL}/questions", timeout=15)
    q_resp.raise_for_status()
    questions = q_resp.json() or []
    if not questions:
        return "❌ No questions found. Check your API_URL.", pd.DataFrame()

    # 2) Init agent
    agent = GAIAAgent(MODEL_ID, hf_token)

    # 3) Answer each
    results = []
    payload = []
    for item in questions:
        tid  = item.get("task_id")
        qtxt = item.get("question", "")
        try:
            ans = agent.answer(qtxt)
        except Exception as e:
            ans = f"ERROR: {e}"
        results.append({"Task ID": tid, "Question": qtxt, "Answer": ans})
        payload.append({"task_id": tid, "submitted_answer": ans})
        time.sleep(0.5)

    # 4) Submit (no agent_code)
    submission = {
        "username": username,
        "answers":  payload
    }
    s_resp = requests.post(f"{API_URL}/submit", json=submission, timeout=60)
    s_resp.raise_for_status()
    data = s_resp.json()

    # 5) Build status text
    status = (
        f"✅ **Submission Successful!**\n\n"
        f"**User:** {data.get('username')}\n"
        f"**Score:** {data.get('score')}% "
        f"({data.get('correct_count')}/{data.get('total_attempted')} correct)\n"
        f"**Message:** {data.get('message')}"
    )
    return status, pd.DataFrame(results)

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown(WELCOME)
    login    = gr.LoginButton()
    run_btn  = gr.Button("▶️ Run GAIA Benchmark")
    status   = gr.Markdown()
    table_df = gr.Dataframe(headers=["Task ID", "Question", "Answer"], wrap=True)

    run_btn.click(
        fn=run_and_submit_all,
        inputs=[login],
        outputs=[status, table_df]
    )

if __name__ == "__main__":
    demo.launch()