Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch # Import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer (same as your original code)
|
6 |
+
model_name = "frameai/PersianSentiment"
|
7 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
|
11 |
+
def predict_sentiment(text):
|
12 |
+
"""Predicts the sentiment of a given text."""
|
13 |
+
inputs = loaded_tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Add padding and truncation
|
14 |
+
outputs = loaded_model(**inputs)
|
15 |
+
# Use softmax to get probabilities and argmax to get the predicted class
|
16 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
17 |
+
predictions = torch.argmax(probabilities, dim=-1).item()
|
18 |
+
|
19 |
+
if predictions == 0:
|
20 |
+
sentiment = "Negative"
|
21 |
+
elif predictions == 1:
|
22 |
+
sentiment = "Positive"
|
23 |
+
else:
|
24 |
+
sentiment = "Neutral"
|
25 |
+
|
26 |
+
# Return probabilities as well for a more informative output
|
27 |
+
return {
|
28 |
+
"Negative": float(probabilities[0][0]),
|
29 |
+
"Positive": float(probabilities[0][1]),
|
30 |
+
"Neutral": float(probabilities[0][2]),
|
31 |
+
}, sentiment
|
32 |
+
|
33 |
+
# Create example sentences
|
34 |
+
examples = [
|
35 |
+
["این فیلم عالی بود!"], # Positive example
|
36 |
+
["من این غذا را دوست نداشتم."], # Negative example
|
37 |
+
["هوا خوب است."], # Neutral (could be slightly positive, depends on context)
|
38 |
+
["کتاب جالبی بود اما کمی خسته کننده هم بود."] , # Mixed/Neutral
|
39 |
+
["اصلا راضی نبودم."] #negative
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
# Create the Gradio interface
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=predict_sentiment,
|
46 |
+
inputs=gr.Textbox(label="Enter Persian Text", lines=5, placeholder="Type your text here..."),
|
47 |
+
outputs=[
|
48 |
+
gr.Label(label="Sentiment Probabilities"),
|
49 |
+
gr.Textbox(label="Predicted Sentiment") # Add output component for the sentiment string
|
50 |
+
|
51 |
+
],
|
52 |
+
title="Persian Sentiment Analysis",
|
53 |
+
description="Enter a Persian sentence and get its sentiment (Positive, Negative, or Neutral).",
|
54 |
+
examples=examples,
|
55 |
+
live=False # set to True for automatic updates as you type
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
iface.launch()
|