Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,267 Bytes
1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 4666344 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 00df420 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 463eea2 bdcfdbe 463eea2 1a678c6 bdcfdbe 1a678c6 bdcfdbe a8e42f9 bdcfdbe ab9ef02 eb8b06a ab9ef02 bdcfdbe 92ae0fb bdcfdbe c0e10ba bdcfdbe 10ec438 bdcfdbe 00df420 1a678c6 a8e42f9 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 bdcfdbe 1a678c6 140a3c5 bdcfdbe 1a678c6 25bc620 1a678c6 bdcfdbe 1a678c6 bdcfdbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import os
import random
import sys
import subprocess
import spaces
import torch
import gradio as gr
from typing import Sequence, Mapping, Any, Union
from examples_db import ZEN_EXAMPLES
from PIL import Image, ImageChops
from huggingface_hub import hf_hub_download
# Setup ComfyUI if not already set up
# if not os.path.exists("ComfyUI"):
# print("Setting up ComfyUI...")
# subprocess.run(["bash", "setup_comfyui.sh"], check=True)
# Ensure the output directory exists
os.makedirs("output", exist_ok=True)
# Download models if not already present
print("Checking and downloading models...")
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models",
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Depth-dev",
filename="flux1-depth-dev.safetensors",
local_dir="models/diffusion_models",
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Canny-dev",
filename="flux1-canny-dev.safetensors",
local_dir="models/controlnet",
)
hf_hub_download(
repo_id="XLabs-AI/flux-controlnet-collections",
filename="flux-canny-controlnet-v3.safetensors",
local_dir="models/controlnet",
)
hf_hub_download(
repo_id="Comfy-Org/sigclip_vision_384",
filename="sigclip_vision_patch14_384.safetensors",
local_dir="models/clip_vision",
)
hf_hub_download(
repo_id="Kijai/DepthAnythingV2-safetensors",
filename="depth_anything_v2_vitl_fp32.safetensors",
local_dir="models/depthanything",
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae/FLUX1",
)
hf_hub_download(
repo_id="comfyanonymous/flux_text_encoders",
filename="clip_l.safetensors",
local_dir="models/text_encoders",
)
t5_path = hf_hub_download(
repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders/t5",
)
# Import required functions and setup ComfyUI path
import folder_paths
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Create a new event loop if running in a new thread
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Import all necessary nodes
print("Importing ComfyUI nodes...")
try:
from nodes import (
StyleModelLoader,
VAEEncode,
NODE_CLASS_MAPPINGS,
LoadImage,
CLIPVisionLoader,
SaveImage,
VAELoader,
CLIPVisionEncode,
DualCLIPLoader,
EmptyLatentImage,
VAEDecode,
UNETLoader,
CLIPTextEncode,
)
# Initialize all constant nodes and models in global context
import_custom_nodes()
except Exception as e:
print(f"Error importing ComfyUI nodes: {e}")
raise
print("Setting up models...")
# Global variables for preloaded models and constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)
# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
"DownloadAndLoadDepthAnythingV2Model"
]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
CANNY_XLABS_MODEL = controlnetloader.load_controlnet(
control_net_name="flux-canny-controlnet-v3.safetensors"
)
# Initialize nodes
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
controlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
canny_prossessor = NODE_CLASS_MAPPINGS["Canny"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
from comfy import model_management
model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL]
print("Loading models to GPU...")
model_management.load_models_gpu(
[
loader[0].patcher if hasattr(loader[0], "patcher") else loader[0]
for loader in model_loaders
]
)
print("Setup complete!")
@spaces.GPU
def generate_image(
prompt,
structure_image,
style_image,
depth_strength=15,
canny_strength=30,
style_strength=0.5,
steps=28,
progress=gr.Progress(track_tqdm=True),
):
"""Main generation function that processes inputs and returns the path to the generated image."""
timestamp = random.randint(10000, 99999)
output_filename = f"flux_zen_{timestamp}.png"
with torch.inference_mode():
# Set up CLIP
clip_switch = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(CLIP_MODEL, 0),
clip2=get_value_at_index(CLIP_MODEL, 0),
)
# Encode text
text_encoded = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(clip_switch, 0),
)
empty_text = cliptextencode.encode(
text="",
clip=get_value_at_index(clip_switch, 0),
)
# Process structure image
structure_img = loadimage.load_image(image=structure_image)
# Resize image
resized_img = imageresize.execute(
width=get_value_at_index(CONST_1024, 0),
height=get_value_at_index(CONST_1024, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(structure_img, 0),
)
# Get image size
size_info = getimagesizeandcount.getsize(
image=get_value_at_index(resized_img, 0)
)
# Encode VAE
vae_encoded = vaeencode.encode(
pixels=get_value_at_index(size_info, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Process canny
canny_processed = canny_prossessor.detect_edge(
image=get_value_at_index(size_info, 0),
low_threshold=0.4,
high_threshold=0.8,
)
# Apply canny Advanced
canny_conditions = controlNetApplyAdvanced.apply_controlnet(
positive=get_value_at_index(text_encoded, 0),
negative=get_value_at_index(empty_text, 0),
control_net=get_value_at_index(CANNY_XLABS_MODEL, 0),
image=get_value_at_index(canny_processed, 0),
strength=canny_strength,
start_percent=0.0,
end_percent=0.5,
vae=get_value_at_index(VAE_MODEL, 0),
)
# Process depth
depth_processed = depthanything_v2.process(
da_model=get_value_at_index(DEPTH_MODEL, 0),
images=get_value_at_index(size_info, 0),
)
# Apply Flux guidance
flux_guided = fluxguidance.append(
guidance=depth_strength,
conditioning=get_value_at_index(canny_conditions, 0),
)
# Process style image
style_img = loadimage.load_image(image=style_image)
# Encode style with CLIP Vision
style_encoded = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
image=get_value_at_index(style_img, 0),
)
# Set up conditioning
conditioning = instructpixtopixconditioning.encode(
positive=get_value_at_index(flux_guided, 0),
negative=get_value_at_index(canny_conditions, 1),
vae=get_value_at_index(VAE_MODEL, 0),
pixels=get_value_at_index(depth_processed, 0),
)
# Apply style
style_applied = stylemodelapplyadvanced.apply_stylemodel(
strength=style_strength,
conditioning=get_value_at_index(conditioning, 0),
style_model=get_value_at_index(STYLE_MODEL, 0),
clip_vision_output=get_value_at_index(style_encoded, 0),
)
# Set up empty latent
empty_latent = emptylatentimage.generate(
width=get_value_at_index(resized_img, 1),
height=get_value_at_index(resized_img, 2),
batch_size=1,
)
# Set up guidance
guided = basicguider.get_guider(
model=get_value_at_index(UNET_MODEL, 0),
conditioning=get_value_at_index(style_applied, 0),
)
# Set up scheduler
schedule = basicscheduler.get_sigmas(
scheduler="simple",
steps=steps,
denoise=1,
model=get_value_at_index(UNET_MODEL, 0),
)
# Generate random noise
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
# Sample
sampled = samplercustomadvanced.sample(
noise=get_value_at_index(noise, 0),
guider=get_value_at_index(guided, 0),
sampler=get_value_at_index(SAMPLER, 0),
sigmas=get_value_at_index(schedule, 0),
latent_image=get_value_at_index(empty_latent, 0),
)
# Decode VAE
decoded = vaedecode.decode(
samples=get_value_at_index(sampled, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Create text node for prefix
prefix = cr_text.text_multiline(text=f"flux_zen_{timestamp}")
# Use SaveImage node to save the image
saved_data = saveimage.save_images(
filename_prefix=get_value_at_index(prefix, 0),
images=get_value_at_index(decoded, 0),
)
try:
saved_path = f"output/{saved_data['ui']['images'][0]['filename']}"
return saved_path
except Exception as e:
print(f"Error getting saved image path: {e}")
# Fall back to the expected path
return os.path.join("output", output_filename)
css = """
footer {
visibility: hidden;
}
.title {
font-size: 1em;
background: linear-gradient(109deg, rgba(34,193,195,1) 0%, rgba(67,253,45,1) 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: bold;
}
"""
header = """
<div align="center" style="line-height: 1;">
<a href="https://github.com/FotographerAI/Zen-style" target="_blank" style="margin: 2px;" name="github_repo_link"><img src="https://img.shields.io/badge/GitHub-Repo-181717.svg" alt="GitHub Repo" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank" style="margin: 2px;" name="hugging_face_space_link"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="ZenCtrl Space" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank" style="margin: 2px;" name="discord_link"><img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord Link" style="display: inline-block; vertical-align: middle;"></a>
</div>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(header)
gr.HTML(
"""
<h1><center>🎨 FLUX <span class="title">Zen Style</span> Depth+Canny 🎨</center></h1>
"""
)
gr.Markdown(
"Flux[dev] Redux + Flux[dev] Canny. This project implements a custom image-to-image style transfer pipeline that blends the style of one image (Image A) into the structure of another image (Image B).We just added canny to the previous work of Nathan Shipley, where the fusion of style and structure creates artistic visual outputs."
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
info="Describe the image you want to generate",
)
with gr.Row():
with gr.Column(scale=1):
structure_image = gr.Image(
image_mode="RGB", label="Structure Image", type="filepath"
)
depth_strength = gr.Slider(
minimum=0,
maximum=50,
value=15,
label="Depth Strength",
info="Controls how much the depth map influences the result",
)
canny_strength = gr.Slider(
minimum=0,
maximum=1.0,
value=0.30,
label="Canny Strength",
info="Controls how much the edge detection influences the result",
)
steps = gr.Slider(
minimum=10,
maximum=50,
value=28,
label="Steps",
info="More steps = better quality but slower generation",
)
with gr.Column(scale=1):
style_image = gr.Image(label="Style Image", type="filepath")
style_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Style Strength",
info="Controls how much the style image influences the result",
)
with gr.Row():
generate_btn = gr.Button("Generate", value=True, variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Image")
gr.Examples(
examples=ZEN_EXAMPLES,
inputs=[
prompt_input,
structure_image,
style_image,
output_image,
depth_strength,
canny_strength,
style_strength,
steps,
],
fn=generate_image,
label="Presets",
examples_per_page=6,
)
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
structure_image,
style_image,
depth_strength,
canny_strength,
style_strength,
steps,
],
outputs=[output_image],
)
gr.Markdown(
"""
## How to use
1. Enter a prompt describing the image you want to generate
2. Upload a structure image to provide the basic shape/composition
3. Upload a style image to influence the visual style
4. Adjust the sliders to control the effect strength
5. Click "Generate" to create your image
## Follow us for more
If you enjoyed this project, you may also like ZenCtrl, our open-source agentic visual control toolkit for generative image pipelines that we are developing.
ZenCtrl space : https://huggingface.co/spaces/fotographerai/ZenCtrl and
Discord : https://discord.com/invite/b9RuYQ3F8k
"""
)
if __name__ == "__main__":
# Create an examples directory if it doesn't exist , for now it is empty
os.makedirs("examples", exist_ok=True)
# Launch the app
demo.launch(share=True)
|