File size: 18,267 Bytes
1a678c6
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
 
 
1a678c6
 
 
 
bdcfdbe
4666344
 
1a678c6
 
 
 
 
 
bdcfdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a678c6
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcfdbe
 
 
1a678c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcfdbe
 
 
 
 
 
1a678c6
 
 
bdcfdbe
00df420
bdcfdbe
 
 
 
 
 
 
 
 
 
1a678c6
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
 
 
 
 
 
1a678c6
bdcfdbe
 
 
 
 
 
 
 
 
 
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
1a678c6
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
1a678c6
 
 
 
 
 
 
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
1a678c6
 
 
 
 
bdcfdbe
1a678c6
463eea2
bdcfdbe
463eea2
1a678c6
 
 
 
bdcfdbe
 
 
 
1a678c6
bdcfdbe
a8e42f9
bdcfdbe
 
 
 
 
 
 
ab9ef02
 
eb8b06a
 
ab9ef02
 
 
 
bdcfdbe
92ae0fb
 
bdcfdbe
 
c0e10ba
bdcfdbe
 
 
10ec438
bdcfdbe
00df420
1a678c6
a8e42f9
1a678c6
bdcfdbe
1a678c6
bdcfdbe
1a678c6
 
 
 
bdcfdbe
1a678c6
 
bdcfdbe
 
 
1a678c6
bdcfdbe
1a678c6
 
bdcfdbe
 
 
1a678c6
bdcfdbe
1a678c6
 
bdcfdbe
 
 
1a678c6
bdcfdbe
1a678c6
 
bdcfdbe
1a678c6
bdcfdbe
 
 
1a678c6
bdcfdbe
1a678c6
bdcfdbe
1a678c6
bdcfdbe
 
1a678c6
 
bdcfdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a678c6
 
 
bdcfdbe
 
 
 
 
 
 
 
 
 
1a678c6
bdcfdbe
 
 
1a678c6
 
 
 
 
 
 
140a3c5
 
 
 
bdcfdbe
 
1a678c6
 
25bc620
1a678c6
bdcfdbe
1a678c6
bdcfdbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os
import random
import sys
import subprocess
import spaces
import torch
import gradio as gr

from typing import Sequence, Mapping, Any, Union
from examples_db import ZEN_EXAMPLES
from PIL import Image, ImageChops
from huggingface_hub import hf_hub_download

# Setup ComfyUI if not already set up
# if not os.path.exists("ComfyUI"):
#    print("Setting up ComfyUI...")
#    subprocess.run(["bash", "setup_comfyui.sh"], check=True)

# Ensure the output directory exists
os.makedirs("output", exist_ok=True)

# Download models if not already present
print("Checking and downloading models...")
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Redux-dev",
    filename="flux1-redux-dev.safetensors",
    local_dir="models/style_models",
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Depth-dev",
    filename="flux1-depth-dev.safetensors",
    local_dir="models/diffusion_models",
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Canny-dev",
    filename="flux1-canny-dev.safetensors",
    local_dir="models/controlnet",
)
hf_hub_download(
    repo_id="XLabs-AI/flux-controlnet-collections",
    filename="flux-canny-controlnet-v3.safetensors",
    local_dir="models/controlnet",
)
hf_hub_download(
    repo_id="Comfy-Org/sigclip_vision_384",
    filename="sigclip_vision_patch14_384.safetensors",
    local_dir="models/clip_vision",
)
hf_hub_download(
    repo_id="Kijai/DepthAnythingV2-safetensors",
    filename="depth_anything_v2_vitl_fp32.safetensors",
    local_dir="models/depthanything",
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-dev",
    filename="ae.safetensors",
    local_dir="models/vae/FLUX1",
)
hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders",
    filename="clip_l.safetensors",
    local_dir="models/text_encoders",
)
t5_path = hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders",
    filename="t5xxl_fp16.safetensors",
    local_dir="models/text_encoders/t5",
)

# Import required functions and setup ComfyUI path
import folder_paths


def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    if path is None:
        path = os.getcwd()
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name
    parent_directory = os.path.dirname(path)
    if parent_directory == path:
        return None
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    try:
        from main import load_extra_path_config
    except ImportError:
        from utils.extra_config import load_extra_path_config
    extra_model_paths = find_path("extra_model_paths.yaml")
    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()


def import_custom_nodes() -> None:
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    # Create a new event loop if running in a new thread
    try:
        loop = asyncio.get_event_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)

    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()


# Import all necessary nodes
print("Importing ComfyUI nodes...")
try:
    from nodes import (
        StyleModelLoader,
        VAEEncode,
        NODE_CLASS_MAPPINGS,
        LoadImage,
        CLIPVisionLoader,
        SaveImage,
        VAELoader,
        CLIPVisionEncode,
        DualCLIPLoader,
        EmptyLatentImage,
        VAEDecode,
        UNETLoader,
        CLIPTextEncode,
    )

    # Initialize all constant nodes and models in global context
    import_custom_nodes()
except Exception as e:
    print(f"Error importing ComfyUI nodes: {e}")
    raise

print("Setting up models...")
# Global variables for preloaded models and constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)

# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
    clip_name1="t5/t5xxl_fp16.safetensors",
    clip_name2="clip_l.safetensors",
    type="flux",
)

# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")

# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
    unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)

# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
    clip_name="sigclip_vision_patch14_384.safetensors"
)

# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
    style_model_name="flux1-redux-dev.safetensors"
)

# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")

# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
    "DownloadAndLoadDepthAnythingV2Model"
]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
    model="depth_anything_v2_vitl_fp32.safetensors"
)

controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
CANNY_XLABS_MODEL = controlnetloader.load_controlnet(
    control_net_name="flux-canny-controlnet-v3.safetensors"
)

# Initialize nodes
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
controlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
canny_prossessor = NODE_CLASS_MAPPINGS["Canny"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()

from comfy import model_management

model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL]

print("Loading models to GPU...")
model_management.load_models_gpu(
    [
        loader[0].patcher if hasattr(loader[0], "patcher") else loader[0]
        for loader in model_loaders
    ]
)

print("Setup complete!")


@spaces.GPU
def generate_image(
    prompt,
    structure_image,
    style_image,
    depth_strength=15,
    canny_strength=30,
    style_strength=0.5,
    steps=28,
    progress=gr.Progress(track_tqdm=True),
):
    """Main generation function that processes inputs and returns the path to the generated image."""
    timestamp = random.randint(10000, 99999)
    output_filename = f"flux_zen_{timestamp}.png"

    with torch.inference_mode():
        # Set up CLIP
        clip_switch = cr_clip_input_switch.switch(
            Input=1,
            clip1=get_value_at_index(CLIP_MODEL, 0),
            clip2=get_value_at_index(CLIP_MODEL, 0),
        )

        # Encode text
        text_encoded = cliptextencode.encode(
            text=prompt,
            clip=get_value_at_index(clip_switch, 0),
        )
        empty_text = cliptextencode.encode(
            text="",
            clip=get_value_at_index(clip_switch, 0),
        )

        # Process structure image
        structure_img = loadimage.load_image(image=structure_image)

        # Resize image
        resized_img = imageresize.execute(
            width=get_value_at_index(CONST_1024, 0),
            height=get_value_at_index(CONST_1024, 0),
            interpolation="bicubic",
            method="keep proportion",
            condition="always",
            multiple_of=16,
            image=get_value_at_index(structure_img, 0),
        )

        # Get image size
        size_info = getimagesizeandcount.getsize(
            image=get_value_at_index(resized_img, 0)
        )

        # Encode VAE
        vae_encoded = vaeencode.encode(
            pixels=get_value_at_index(size_info, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )

        # Process canny
        canny_processed = canny_prossessor.detect_edge(
            image=get_value_at_index(size_info, 0),
            low_threshold=0.4,
            high_threshold=0.8,
        )

        # Apply canny Advanced
        canny_conditions = controlNetApplyAdvanced.apply_controlnet(
            positive=get_value_at_index(text_encoded, 0),
            negative=get_value_at_index(empty_text, 0),
            control_net=get_value_at_index(CANNY_XLABS_MODEL, 0),
            image=get_value_at_index(canny_processed, 0),
            strength=canny_strength,
            start_percent=0.0,
            end_percent=0.5,
            vae=get_value_at_index(VAE_MODEL, 0),
        )

        # Process depth
        depth_processed = depthanything_v2.process(
            da_model=get_value_at_index(DEPTH_MODEL, 0),
            images=get_value_at_index(size_info, 0),
        )

        # Apply Flux guidance
        flux_guided = fluxguidance.append(
            guidance=depth_strength,
            conditioning=get_value_at_index(canny_conditions, 0),
        )

        # Process style image
        style_img = loadimage.load_image(image=style_image)

        # Encode style with CLIP Vision
        style_encoded = clipvisionencode.encode(
            crop="center",
            clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
            image=get_value_at_index(style_img, 0),
        )

        # Set up conditioning
        conditioning = instructpixtopixconditioning.encode(
            positive=get_value_at_index(flux_guided, 0),
            negative=get_value_at_index(canny_conditions, 1),
            vae=get_value_at_index(VAE_MODEL, 0),
            pixels=get_value_at_index(depth_processed, 0),
        )

        # Apply style
        style_applied = stylemodelapplyadvanced.apply_stylemodel(
            strength=style_strength,
            conditioning=get_value_at_index(conditioning, 0),
            style_model=get_value_at_index(STYLE_MODEL, 0),
            clip_vision_output=get_value_at_index(style_encoded, 0),
        )

        # Set up empty latent
        empty_latent = emptylatentimage.generate(
            width=get_value_at_index(resized_img, 1),
            height=get_value_at_index(resized_img, 2),
            batch_size=1,
        )

        # Set up guidance
        guided = basicguider.get_guider(
            model=get_value_at_index(UNET_MODEL, 0),
            conditioning=get_value_at_index(style_applied, 0),
        )

        # Set up scheduler
        schedule = basicscheduler.get_sigmas(
            scheduler="simple",
            steps=steps,
            denoise=1,
            model=get_value_at_index(UNET_MODEL, 0),
        )

        # Generate random noise
        noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))

        # Sample
        sampled = samplercustomadvanced.sample(
            noise=get_value_at_index(noise, 0),
            guider=get_value_at_index(guided, 0),
            sampler=get_value_at_index(SAMPLER, 0),
            sigmas=get_value_at_index(schedule, 0),
            latent_image=get_value_at_index(empty_latent, 0),
        )

        # Decode VAE
        decoded = vaedecode.decode(
            samples=get_value_at_index(sampled, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )

        # Create text node for prefix
        prefix = cr_text.text_multiline(text=f"flux_zen_{timestamp}")

        # Use SaveImage node to save the image
        saved_data = saveimage.save_images(
            filename_prefix=get_value_at_index(prefix, 0),
            images=get_value_at_index(decoded, 0),
        )

        try:
            saved_path = f"output/{saved_data['ui']['images'][0]['filename']}"

            return saved_path
        except Exception as e:
            print(f"Error getting saved image path: {e}")
            # Fall back to the expected path
            return os.path.join("output", output_filename)
css = """
footer {
    visibility: hidden;
}

.title {
    font-size: 1em;
    background: linear-gradient(109deg, rgba(34,193,195,1) 0%, rgba(67,253,45,1) 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    font-weight: bold;
}
"""

header = """
<div align="center" style="line-height: 1;">
    <a href="https://github.com/FotographerAI/Zen-style" target="_blank" style="margin: 2px;" name="github_repo_link"><img src="https://img.shields.io/badge/GitHub-Repo-181717.svg" alt="GitHub Repo" style="display: inline-block; vertical-align: middle;"></a>
    <a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank" style="margin: 2px;" name="hugging_face_space_link"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="ZenCtrl Space" style="display: inline-block; vertical-align: middle;"></a>
    <a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank" style="margin: 2px;" name="discord_link"><img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord Link" style="display: inline-block; vertical-align: middle;"></a>
</div>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(header)
    
    gr.HTML(
        """
        <h1><center>🎨 FLUX <span class="title">Zen Style</span> Depth+Canny 🎨</center></h1>
        """
    )
    gr.Markdown(
        "Flux[dev] Redux + Flux[dev] Canny. This project implements a custom image-to-image style transfer pipeline that blends the style of one image (Image A) into the structure of another image (Image B).We just added canny to the previous work of Nathan Shipley, where the fusion of style and structure creates artistic visual outputs."
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here...",
                info="Describe the image you want to generate",
            )
            with gr.Row():
                with gr.Column(scale=1):
                    structure_image = gr.Image(
                        image_mode="RGB", label="Structure Image", type="filepath"
                    )
                    depth_strength = gr.Slider(
                        minimum=0,
                        maximum=50,
                        value=15,
                        label="Depth Strength",
                        info="Controls how much the depth map influences the result",
                    )
                    canny_strength = gr.Slider(
                        minimum=0,
                        maximum=1.0,
                        value=0.30,
                        label="Canny Strength",
                        info="Controls how much the edge detection influences the result",
                    )
                    steps = gr.Slider(
                        minimum=10,
                        maximum=50,
                        value=28,
                        label="Steps",
                        info="More steps = better quality but slower generation",
                    )
                with gr.Column(scale=1):
                    style_image = gr.Image(label="Style Image", type="filepath")
                    style_strength = gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=0.5,
                        label="Style Strength",
                        info="Controls how much the style image influences the result",
                    )

            with gr.Row():
                generate_btn = gr.Button("Generate", value=True, variant="primary")

        with gr.Column(scale=1):
            output_image = gr.Image(label="Generated Image")

    gr.Examples(
        examples=ZEN_EXAMPLES,
        inputs=[
            prompt_input,
            structure_image,
            style_image,
            output_image,
            depth_strength,
            canny_strength,
            style_strength,
            steps,
        ],
        fn=generate_image,
        label="Presets",
        examples_per_page=6,
    )

    generate_btn.click(
        fn=generate_image,
        inputs=[
            prompt_input,
            structure_image,
            style_image,
            depth_strength,
            canny_strength,
            style_strength,
            steps,
        ],
        outputs=[output_image],
    )

    gr.Markdown(
        """
    ## How to use
    1. Enter a prompt describing the image you want to generate
    2. Upload a structure image to provide the basic shape/composition
    3. Upload a style image to influence the visual style
    4. Adjust the sliders to control the effect strength
    5. Click "Generate" to create your image
    
    ## Follow us for more 
    If you enjoyed this project, you may also like ZenCtrl, our open-source agentic visual control toolkit for generative image pipelines that we are developing.
    ZenCtrl space : https://huggingface.co/spaces/fotographerai/ZenCtrl and 
    Discord : https://discord.com/invite/b9RuYQ3F8k
    """
    )

if __name__ == "__main__":
    # Create an examples directory if it doesn't exist , for now it is empty
    os.makedirs("examples", exist_ok=True)

    # Launch the app
    demo.launch(share=True)