tavr_project / app.py
fmegahed's picture
Update app.py
cd144f0
raw
history blame
9.55 kB
# pip install pycaret
from pandas.api.types import CategoricalDtype
import pandas as pd
import jinja2
from pycaret.classification import *
import imblearn as im
import sklearn
import gradio as gr
import numpy as np
import io
import pickle
import requests
import urllib.request
import shutil
# url = 'https://raw.githubusercontent.com/fmegahed/tavr_paper/main/data/example_data2.csv'
# download = requests.get(url).content
ex_data =pd.read_csv('example_data2.csv')
ex_data = ex_data.to_numpy()
ex_data = ex_data.tolist()
def predict(age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation,
cancer, cardiac_arrhythmias, carotid_artery_disease,
chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
family_history, fluid_and_electrolyte_disorder, heart_failure,
hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
endovascular_tavr, transapical_tavr):
df = pd.DataFrame.from_dict({
'age': [age], 'female': [female], 'race': [race], 'elective': elective,
'aweekend': [aweekend], 'zipinc_qrtl': [zipinc_qrtl],
'hosp_region': [hosp_region], 'hosp_division': [hosp_division],
'hosp_locteach': [hosp_locteach], 'hosp_bedsize': [hosp_bedsize],
'h_contrl': [h_contrl], 'pay': [pay], 'anemia': [anemia],
'atrial_fibrillation': [atrial_fibrillation], 'cancer': [cancer],
'cardiac_arrhythmias': [cardiac_arrhythmias],
'carotid_artery_disease': [carotid_artery_disease],
'chronic_kidney_disease': [chronic_kidney_disease],
'chronic_pulmonary_disease': [chronic_pulmonary_disease],
'coagulopathy': [coagulopathy], 'depression': [depression],
'diabetes_mellitus': [diabetes_mellitus], 'drug_abuse': [drug_abuse],
'dyslipidemia': [dyslipidemia], 'endocarditis': [endocarditis],
'family_history': [family_history], 'fluid_and_electrolyte_disorder': [fluid_and_electrolyte_disorder],
'heart_failure': [heart_failure], 'hypertension': [hypertension],
'known_cad': [known_cad], 'liver_disease': [liver_disease],
'obesity': [obesity], 'peripheral_vascular_disease': [peripheral_vascular_disease],
'prior_cabg': [prior_cabg], 'prior_icd': [prior_icd], 'prior_mi': [prior_mi],
'prior_pci': [prior_pci], 'prior_ppm': [prior_ppm], 'prior_tia_stroke': [prior_tia_stroke],
'pulmonary_circulation_disorder': [pulmonary_circulation_disorder],
'smoker': [smoker], 'valvular_disease': [valvular_disease],
'weight_loss': [weight_loss], 'endovascular_tavr': [endovascular_tavr],
'transapical_tavr': [transapical_tavr]
})
df.loc[:, df.dtypes == 'object'] =\
df.select_dtypes(['object'])\
.apply(lambda x: x.astype('category'))
# converting ordinal column to ordinal
ordinal_cat = CategoricalDtype(categories = ['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], ordered = True)
df.zipinc_qrtl = df.zipinc_qrtl.astype(ordinal_cat)
with urllib.request.urlopen('https://github.com/fmegahed/tavr_paper/blob/main/data/final_model.pkl?raw=true') as response, open('final_model.pkl', 'wb') as out_file:
shutil.copyfileobj(response, out_file)
model = load_model('final_model')
pred = predict_model(model, df, raw_score=True)
return {'Death %': round(100*pred['Score_Yes'][0], 2),
'Survival %': round(100*pred['Score_No'][0], 2),
'Predicting Death Outcome:': pred['Label'][0]}
# Defining the containers for each input
age = gr.inputs.Slider(minimum=18, maximum=100, default=60, label="Age")
female = gr.inputs.Dropdown(choices=["Female", "Male"],label = 'Sex')
race = gr.inputs.Dropdown(choices=['Asian or Pacific Islander', 'Black', 'Hispanic', 'Native American', 'White', 'Other'], label = 'Race')
elective = gr.inputs.Radio(choices=['Elective', 'NonElective'], label = 'Elective')
aweekend = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weekend')
zipinc_qrtl = gr.inputs.Radio(choices=['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], label = 'Zip Income Quartile')
hosp_region = gr.inputs.Radio(choices=['Midwest', 'Northeast', 'South', 'West'], label = 'Hospital Region')
hosp_division = gr.inputs.Radio(choices=['New England', 'Middle Atlantic', 'East North Central', 'West North Central', 'South Atlantic', 'East South Central', 'West South Central', 'Mountain', 'Pacific'], label = 'Hospital Division')
hosp_locteach = gr.inputs.Radio(choices=['Urban teaching', 'Urban nonteaching', 'Rural'], label= 'Hospital Location/Teaching')
hosp_bedsize = gr.inputs.Radio(choices=['Small', 'Medium', 'Large'], label= 'Hospital Bedsize')
h_contrl = gr.inputs.Radio(choices= ['Government_nonfederal', 'Private_invest_own', 'Private_not_profit'], label = 'Hospital Control')
pay = gr.inputs.Dropdown(choices= ['Private insurance', 'Medicare', 'Medicaid', 'Self-pay', 'No charge', 'Other'], label = 'Payee')
anemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Anemia')
atrial_fibrillation = gr.inputs.Radio(choices=["No", "Yes"], label = 'Atrial Fibrillation')
cancer = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cancer')
cardiac_arrhythmias = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cardiac Arrhythmias')
carotid_artery_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Carotid Artery Disease')
chronic_kidney_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Kidney Disease')
chronic_pulmonary_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Pulmonary Disease')
coagulopathy = gr.inputs.Radio(choices=["No", "Yes"], label = 'Coagulopathy')
depression = gr.inputs.Radio(choices=["No", "Yes"], label = 'Depression')
diabetes_mellitus = gr.inputs.Radio(choices=["No", "Yes"], label = 'Diabetes Mellitus')
drug_abuse = gr.inputs.Radio(choices=["No", "Yes"], label = 'Drug Abuse')
dyslipidemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Dyslipidemia')
endocarditis = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endocarditis')
family_history = gr.inputs.Radio(choices=["No", "Yes"], label = 'Family History')
fluid_and_electrolyte_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Fluid and Electrolyte Disorder')
heart_failure = gr.inputs.Radio(choices=["No", "Yes"], label = 'Heart Failure')
hypertension = gr.inputs.Radio(choices=["No", "Yes"], label = 'Hypertension')
known_cad = gr.inputs.Radio(choices=["No", "Yes"], label = 'Known CAD')
liver_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Liver Disease')
obesity = gr.inputs.Radio(choices=["No", "Yes"], label = 'Obesity')
peripheral_vascular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Peripheral Vascular Disease')
prior_cabg = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior CABG')
prior_icd = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior ICD')
prior_mi = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior MI')
prior_pci = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PCI')
prior_ppm = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PPM')
prior_tia_stroke = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior TIA Stroke')
pulmonary_circulation_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Pulmonary Circulation Disorder')
smoker = gr.inputs.Radio(choices=["No", "Yes"], label = 'Smoker')
valvular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Valvular Disease')
weight_loss = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weight Loss')
endovascular_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endovascular TAVR')
transapical_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Transapical TAVR', default= 'Yes')
# Defining and launching the interface
iface = gr.Interface(
fn = predict,
inputs = [age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation,
cancer, cardiac_arrhythmias, carotid_artery_disease,
chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
family_history, fluid_and_electrolyte_disorder, heart_failure,
hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
endovascular_tavr, transapical_tavr],
outputs = 'text',
live=True,
title = "Predicting In-Hospital Mortality After TAVR Using Preoperative Variables and Penalized Logistic Regression",
description = "The app below utilizes the finalized logistic regression model with an l2 penalty based on the manuscript by Alhwiti, Aldrugh, and Megahed. The manuscript is under review at Scientific Reports. The data used for model building is all TAVR procedures between 2012 and 2019 as reported in the HCUP NIS database. <br><br> The purpose of the app is to provide evidence-based clinical support for interventional cardiology. </b>.",
css = 'https://bootswatch.com/5/journal/bootstrap.css')
iface.launch()