Spaces:
Running
Running
Bug fixes in the app, with both the evaluate function and the download button
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
from statsforecast import StatsForecast
|
7 |
from statsforecast.models import (
|
8 |
-
|
9 |
Naive,
|
10 |
SeasonalNaive,
|
11 |
WindowAverage,
|
@@ -15,36 +15,46 @@ from statsforecast.models import (
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
-
import tempfile
|
19 |
|
20 |
-
# Function to load and process
|
21 |
def load_data(file):
|
22 |
if file is None:
|
23 |
return None, "Please upload a CSV file"
|
24 |
-
|
25 |
try:
|
26 |
-
# Safe read using file-like object
|
27 |
df = pd.read_csv(file)
|
28 |
-
|
29 |
-
# Check for required columns
|
30 |
required_cols = ['unique_id', 'ds', 'y']
|
31 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
32 |
-
|
33 |
if missing_cols:
|
34 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
35 |
-
|
36 |
-
# Convert 'ds' to datetime
|
37 |
df['ds'] = pd.to_datetime(df['ds'])
|
38 |
-
|
39 |
-
# Sort by date
|
40 |
df = df.sort_values(['unique_id', 'ds'])
|
41 |
-
|
42 |
return df, "Data loaded successfully!"
|
43 |
-
|
44 |
except Exception as e:
|
45 |
return None, f"Error loading data: {str(e)}"
|
46 |
|
47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def run_forecast(
|
49 |
file,
|
50 |
frequency,
|
@@ -68,99 +78,99 @@ def run_forecast(
|
|
68 |
return None, None, None, message
|
69 |
|
70 |
models = []
|
71 |
-
|
|
|
72 |
if use_historical_avg:
|
73 |
-
models.append(
|
|
|
74 |
if use_naive:
|
75 |
models.append(Naive(alias='naive'))
|
|
|
76 |
if use_seasonal_naive:
|
77 |
models.append(SeasonalNaive(m=seasonality, alias='seasonal_naive'))
|
|
|
78 |
if use_window_avg:
|
79 |
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
|
|
80 |
if use_seasonal_window_avg:
|
81 |
models.append(SeasonalWindowAverage(m=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
|
|
82 |
if use_autoets:
|
83 |
models.append(AutoETS(alias='autoets'))
|
|
|
84 |
if use_autoarima:
|
85 |
models.append(AutoARIMA(alias='autoarima'))
|
|
|
86 |
|
87 |
if not models:
|
88 |
return None, None, None, "Please select at least one forecasting model"
|
89 |
|
90 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
91 |
-
|
92 |
try:
|
93 |
if eval_strategy == "Cross Validation":
|
94 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
95 |
-
evaluation = evaluate(cv_results,
|
96 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
97 |
fig_forecast = create_forecast_plot(cv_results, df)
|
98 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
99 |
-
|
|
|
100 |
train_size = len(df) - horizon
|
101 |
if train_size <= 0:
|
102 |
return None, None, None, f"Not enough data for horizon={horizon}"
|
103 |
-
|
104 |
train_df = df.iloc[:train_size]
|
105 |
test_df = df.iloc[train_size:]
|
106 |
sf.fit(train_df)
|
107 |
forecast = sf.predict(h=horizon)
|
108 |
-
evaluation = evaluate(forecast,
|
109 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
110 |
fig_forecast = create_forecast_plot(forecast, df)
|
111 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
112 |
-
|
113 |
except Exception as e:
|
114 |
return None, None, None, f"Error during forecasting: {str(e)}"
|
115 |
|
116 |
-
#
|
117 |
-
def create_forecast_plot(forecast_df, original_df):
|
118 |
-
plt.figure(figsize=(10, 6))
|
119 |
-
unique_ids = forecast_df['unique_id'].unique()
|
120 |
-
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
121 |
-
|
122 |
-
for unique_id in unique_ids:
|
123 |
-
original_data = original_df[original_df['unique_id'] == unique_id]
|
124 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
125 |
-
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
126 |
-
for col in forecast_cols:
|
127 |
-
if col in forecast_data.columns:
|
128 |
-
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
129 |
-
|
130 |
-
plt.title('Forecasting Results')
|
131 |
-
plt.xlabel('Date')
|
132 |
-
plt.ylabel('Value')
|
133 |
-
plt.legend()
|
134 |
-
plt.grid(True)
|
135 |
-
fig = plt.gcf()
|
136 |
-
return fig
|
137 |
-
|
138 |
-
# Download sample file (placeholder path)
|
139 |
def download_sample():
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
144 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
145 |
-
gr.Markdown("Upload a CSV with `unique_id`, `ds`, `y` columns
|
146 |
|
147 |
with gr.Row():
|
148 |
with gr.Column(scale=2):
|
149 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
150 |
download_btn = gr.Button("Download Sample Data")
|
151 |
-
download_output = gr.File(
|
152 |
download_btn.click(fn=download_sample, outputs=download_output)
|
153 |
|
154 |
-
frequency = gr.Dropdown(
|
155 |
-
|
156 |
-
label="Frequency",
|
157 |
-
value="D"
|
158 |
-
)
|
159 |
-
eval_strategy = gr.Radio(
|
160 |
-
choices=["Fixed Window", "Cross Validation"],
|
161 |
-
label="Evaluation Strategy",
|
162 |
-
value="Cross Validation"
|
163 |
-
)
|
164 |
horizon = gr.Slider(1, 100, value=14, label="Horizon")
|
165 |
step_size = gr.Slider(1, 50, value=5, label="Step Size")
|
166 |
num_windows = gr.Slider(1, 20, value=3, label="Number of Windows")
|
@@ -197,4 +207,4 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
197 |
)
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
-
app.launch()
|
|
|
1 |
import pandas as pd
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import gradio as gr
|
4 |
+
import tempfile
|
5 |
|
6 |
from statsforecast import StatsForecast
|
7 |
from statsforecast.models import (
|
8 |
+
HistoricalAverage,
|
9 |
Naive,
|
10 |
SeasonalNaive,
|
11 |
WindowAverage,
|
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
|
|
18 |
|
19 |
+
# Function to load and process uploaded CSV
|
20 |
def load_data(file):
|
21 |
if file is None:
|
22 |
return None, "Please upload a CSV file"
|
|
|
23 |
try:
|
|
|
24 |
df = pd.read_csv(file)
|
|
|
|
|
25 |
required_cols = ['unique_id', 'ds', 'y']
|
26 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
|
|
27 |
if missing_cols:
|
28 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
|
|
|
|
29 |
df['ds'] = pd.to_datetime(df['ds'])
|
|
|
|
|
30 |
df = df.sort_values(['unique_id', 'ds'])
|
|
|
31 |
return df, "Data loaded successfully!"
|
|
|
32 |
except Exception as e:
|
33 |
return None, f"Error loading data: {str(e)}"
|
34 |
|
35 |
+
# Function to generate and return a plot
|
36 |
+
def create_forecast_plot(forecast_df, original_df):
|
37 |
+
plt.figure(figsize=(10, 6))
|
38 |
+
unique_ids = forecast_df['unique_id'].unique()
|
39 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
40 |
+
|
41 |
+
for unique_id in unique_ids:
|
42 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
43 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
44 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
45 |
+
for col in forecast_cols:
|
46 |
+
if col in forecast_data.columns:
|
47 |
+
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
48 |
+
|
49 |
+
plt.title('Forecasting Results')
|
50 |
+
plt.xlabel('Date')
|
51 |
+
plt.ylabel('Value')
|
52 |
+
plt.legend()
|
53 |
+
plt.grid(True)
|
54 |
+
fig = plt.gcf()
|
55 |
+
return fig
|
56 |
+
|
57 |
+
# Main forecasting logic
|
58 |
def run_forecast(
|
59 |
file,
|
60 |
frequency,
|
|
|
78 |
return None, None, None, message
|
79 |
|
80 |
models = []
|
81 |
+
model_aliases = []
|
82 |
+
|
83 |
if use_historical_avg:
|
84 |
+
models.append(HistoricalAverage(alias='historical_average'))
|
85 |
+
model_aliases.append('historical_average')
|
86 |
if use_naive:
|
87 |
models.append(Naive(alias='naive'))
|
88 |
+
model_aliases.append('naive')
|
89 |
if use_seasonal_naive:
|
90 |
models.append(SeasonalNaive(m=seasonality, alias='seasonal_naive'))
|
91 |
+
model_aliases.append('seasonal_naive')
|
92 |
if use_window_avg:
|
93 |
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
94 |
+
model_aliases.append('window_average')
|
95 |
if use_seasonal_window_avg:
|
96 |
models.append(SeasonalWindowAverage(m=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
97 |
+
model_aliases.append('seasonal_window_average')
|
98 |
if use_autoets:
|
99 |
models.append(AutoETS(alias='autoets'))
|
100 |
+
model_aliases.append('autoets')
|
101 |
if use_autoarima:
|
102 |
models.append(AutoARIMA(alias='autoarima'))
|
103 |
+
model_aliases.append('autoarima')
|
104 |
|
105 |
if not models:
|
106 |
return None, None, None, "Please select at least one forecasting model"
|
107 |
|
108 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
109 |
+
|
110 |
try:
|
111 |
if eval_strategy == "Cross Validation":
|
112 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
113 |
+
evaluation = evaluate(df=cv_results, metrics=['me', 'mae', 'rmse', 'mape'], models=model_aliases)
|
114 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
115 |
fig_forecast = create_forecast_plot(cv_results, df)
|
116 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
117 |
+
|
118 |
+
else: # Fixed window
|
119 |
train_size = len(df) - horizon
|
120 |
if train_size <= 0:
|
121 |
return None, None, None, f"Not enough data for horizon={horizon}"
|
122 |
+
|
123 |
train_df = df.iloc[:train_size]
|
124 |
test_df = df.iloc[train_size:]
|
125 |
sf.fit(train_df)
|
126 |
forecast = sf.predict(h=horizon)
|
127 |
+
evaluation = evaluate(df=forecast, metrics=['me', 'mae', 'rmse', 'mape'], models=model_aliases)
|
128 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
129 |
fig_forecast = create_forecast_plot(forecast, df)
|
130 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
131 |
+
|
132 |
except Exception as e:
|
133 |
return None, None, None, f"Error during forecasting: {str(e)}"
|
134 |
|
135 |
+
# Sample CSV file generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def download_sample():
|
137 |
+
sample_data = """unique_id,ds,y
|
138 |
+
series1,2023-01-01,100
|
139 |
+
series1,2023-01-02,105
|
140 |
+
series1,2023-01-03,102
|
141 |
+
series1,2023-01-04,107
|
142 |
+
series1,2023-01-05,104
|
143 |
+
series1,2023-01-06,110
|
144 |
+
series1,2023-01-07,108
|
145 |
+
series1,2023-01-08,112
|
146 |
+
series1,2023-01-09,115
|
147 |
+
series1,2023-01-10,118
|
148 |
+
series1,2023-01-11,120
|
149 |
+
series1,2023-01-12,123
|
150 |
+
series1,2023-01-13,126
|
151 |
+
series1,2023-01-14,129
|
152 |
+
series1,2023-01-15,131
|
153 |
+
"""
|
154 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
|
155 |
+
temp.write(sample_data)
|
156 |
+
temp.close()
|
157 |
+
return temp.name
|
158 |
+
|
159 |
+
# Gradio interface
|
160 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
161 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
162 |
+
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
163 |
|
164 |
with gr.Row():
|
165 |
with gr.Column(scale=2):
|
166 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
167 |
+
|
168 |
download_btn = gr.Button("Download Sample Data")
|
169 |
+
download_output = gr.File(label="Click to download", visible=True)
|
170 |
download_btn.click(fn=download_sample, outputs=download_output)
|
171 |
|
172 |
+
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
173 |
+
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
horizon = gr.Slider(1, 100, value=14, label="Horizon")
|
175 |
step_size = gr.Slider(1, 50, value=5, label="Step Size")
|
176 |
num_windows = gr.Slider(1, 20, value=3, label="Number of Windows")
|
|
|
207 |
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
+
app.launch(share=True)
|