Spaces:
Running
Running
Added the import of the losses
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ from statsforecast.models import (
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
|
|
18 |
|
19 |
# Function to load and process uploaded CSV
|
20 |
def load_data(file):
|
@@ -110,7 +111,7 @@ def run_forecast(
|
|
110 |
try:
|
111 |
if eval_strategy == "Cross Validation":
|
112 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
113 |
-
evaluation = evaluate(df=cv_results, metrics=['
|
114 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
115 |
fig_forecast = create_forecast_plot(cv_results, df)
|
116 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
@@ -207,4 +208,4 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
207 |
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
-
app.launch(share=
|
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
+
from utilsforecast.losses import mae, rmse, bias, mape
|
19 |
|
20 |
# Function to load and process uploaded CSV
|
21 |
def load_data(file):
|
|
|
111 |
try:
|
112 |
if eval_strategy == "Cross Validation":
|
113 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
114 |
+
evaluation = evaluate(df=cv_results, metrics=['bias', 'mae', 'rmse', 'mape'], models=model_aliases)
|
115 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
116 |
fig_forecast = create_forecast_plot(cv_results, df)
|
117 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
|
|
208 |
)
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
+
app.launch(share=False)
|