Spaces:
Running
Running
Fixing the indentation
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from statsforecast.models import (
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
-
from utilsforecast.losses import *
|
19 |
|
20 |
# Function to load and process uploaded CSV
|
21 |
def load_data(file):
|
@@ -33,20 +33,15 @@ def load_data(file):
|
|
33 |
except Exception as e:
|
34 |
return None, f"Error loading data: {str(e)}"
|
35 |
|
36 |
-
|
37 |
-
# Global store to hold cross-validation forecasts
|
38 |
-
forecast_store = {}
|
39 |
-
|
40 |
-
# Function to generate and return a plot
|
41 |
-
|
42 |
def create_forecast_plot(forecast_df, original_df, window=None):
|
43 |
plt.figure(figsize=(10, 6))
|
44 |
unique_ids = forecast_df['unique_id'].unique()
|
45 |
-
if window is not None and 'cutoff' in forecast_df.columns:
|
46 |
-
forecast_df = forecast_df[forecast_df['cutoff'] == window]
|
47 |
-
|
48 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
49 |
|
|
|
|
|
|
|
50 |
for unique_id in unique_ids:
|
51 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
52 |
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
@@ -55,7 +50,7 @@ def create_forecast_plot(forecast_df, original_df, window=None):
|
|
55 |
if col in forecast_data.columns:
|
56 |
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
57 |
|
58 |
-
plt.title('Forecasting Results')
|
59 |
plt.xlabel('Date')
|
60 |
plt.ylabel('Value')
|
61 |
plt.legend()
|
@@ -84,7 +79,7 @@ def run_forecast(
|
|
84 |
):
|
85 |
df, message = load_data(file)
|
86 |
if df is None:
|
87 |
-
return None, None, None, message
|
88 |
|
89 |
models = []
|
90 |
model_aliases = []
|
@@ -112,7 +107,7 @@ def run_forecast(
|
|
112 |
model_aliases.append('autoarima')
|
113 |
|
114 |
if not models:
|
115 |
-
return None, None, None, "Please select at least one forecasting model"
|
116 |
|
117 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
118 |
|
@@ -121,7 +116,6 @@ def run_forecast(
|
|
121 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
122 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
123 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
124 |
-
forecast_store['cv'] = {'forecast': cv_results, 'original': df}
|
125 |
unique_cutoffs = sorted(cv_results['cutoff'].unique())
|
126 |
fig_forecast = create_forecast_plot(cv_results, df, window=unique_cutoffs[0])
|
127 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!", unique_cutoffs
|
@@ -129,7 +123,7 @@ def run_forecast(
|
|
129 |
else: # Fixed window
|
130 |
train_size = len(df) - horizon
|
131 |
if train_size <= 0:
|
132 |
-
return None, None, None, f"Not enough data for horizon={horizon}"
|
133 |
|
134 |
train_df = df.iloc[:train_size]
|
135 |
test_df = df.iloc[train_size:]
|
@@ -141,16 +135,7 @@ def run_forecast(
|
|
141 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!", []
|
142 |
|
143 |
except Exception as e:
|
144 |
-
return None, None, None, f"Error during forecasting: {str(e)}"
|
145 |
-
|
146 |
-
|
147 |
-
# Function to update forecast plot for selected CV window
|
148 |
-
def update_forecast_plot(selected_window):
|
149 |
-
data = forecast_store.get('cv')
|
150 |
-
if not data:
|
151 |
-
return None
|
152 |
-
return create_forecast_plot(data['forecast'], data['original'], window=selected_window)
|
153 |
-
|
154 |
|
155 |
# Sample CSV file generation
|
156 |
def download_sample():
|
@@ -211,14 +196,11 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
211 |
submit_btn = gr.Button("Run Forecast")
|
212 |
|
213 |
with gr.Column(scale=3):
|
214 |
-
window_selector = gr.Dropdown(label='Select CV Window', choices=[], visible=False)
|
215 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
216 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
217 |
plot_output = gr.Plot(label="Forecast Plot")
|
218 |
message_output = gr.Textbox(label="Message")
|
219 |
-
|
220 |
-
def handle_forecast_output(eval_df, forecast_df, plot, msg, windows):
|
221 |
-
return eval_df, forecast_df, plot, msg, gr.update(choices=[str(w) for w in windows], visible=bool(windows), value=str(windows[0]) if windows else None)
|
222 |
|
223 |
submit_btn.click(
|
224 |
fn=run_forecast,
|
@@ -231,8 +213,7 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
231 |
outputs=[eval_output, forecast_output, plot_output, message_output, window_selector]
|
232 |
)
|
233 |
|
|
|
|
|
234 |
if __name__ == "__main__":
|
235 |
app.launch(share=False)
|
236 |
-
|
237 |
-
# Update plot when a window is selected
|
238 |
-
window_selector.change(fn=update_forecast_plot, inputs=window_selector, outputs=plot_output)
|
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
+
from utilsforecast.losses import * # Assuming you need the metrics like bias, mae, rmse, mape
|
19 |
|
20 |
# Function to load and process uploaded CSV
|
21 |
def load_data(file):
|
|
|
33 |
except Exception as e:
|
34 |
return None, f"Error loading data: {str(e)}"
|
35 |
|
36 |
+
# Function to generate and return a plot for a specific cross-validation window
|
|
|
|
|
|
|
|
|
|
|
37 |
def create_forecast_plot(forecast_df, original_df, window=None):
|
38 |
plt.figure(figsize=(10, 6))
|
39 |
unique_ids = forecast_df['unique_id'].unique()
|
|
|
|
|
|
|
40 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
41 |
|
42 |
+
if window is not None and 'cutoff' in forecast_df.columns:
|
43 |
+
forecast_df = forecast_df[forecast_df['cutoff'] == window]
|
44 |
+
|
45 |
for unique_id in unique_ids:
|
46 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
47 |
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
|
|
50 |
if col in forecast_data.columns:
|
51 |
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
52 |
|
53 |
+
plt.title(f'Forecasting Results{" (Window: " + str(window) + ")" if window else ""}')
|
54 |
plt.xlabel('Date')
|
55 |
plt.ylabel('Value')
|
56 |
plt.legend()
|
|
|
79 |
):
|
80 |
df, message = load_data(file)
|
81 |
if df is None:
|
82 |
+
return None, None, None, message, []
|
83 |
|
84 |
models = []
|
85 |
model_aliases = []
|
|
|
107 |
model_aliases.append('autoarima')
|
108 |
|
109 |
if not models:
|
110 |
+
return None, None, None, "Please select at least one forecasting model", []
|
111 |
|
112 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
113 |
|
|
|
116 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
117 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
118 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
|
|
119 |
unique_cutoffs = sorted(cv_results['cutoff'].unique())
|
120 |
fig_forecast = create_forecast_plot(cv_results, df, window=unique_cutoffs[0])
|
121 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!", unique_cutoffs
|
|
|
123 |
else: # Fixed window
|
124 |
train_size = len(df) - horizon
|
125 |
if train_size <= 0:
|
126 |
+
return None, None, None, f"Not enough data for horizon={horizon}", []
|
127 |
|
128 |
train_df = df.iloc[:train_size]
|
129 |
test_df = df.iloc[train_size:]
|
|
|
135 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!", []
|
136 |
|
137 |
except Exception as e:
|
138 |
+
return None, None, None, f"Error during forecasting: {str(e)}", []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
# Sample CSV file generation
|
141 |
def download_sample():
|
|
|
196 |
submit_btn = gr.Button("Run Forecast")
|
197 |
|
198 |
with gr.Column(scale=3):
|
|
|
199 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
200 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
201 |
plot_output = gr.Plot(label="Forecast Plot")
|
202 |
message_output = gr.Textbox(label="Message")
|
203 |
+
window_selector = gr.Dropdown(label="Select Forecast Window", choices=[], visible=False)
|
|
|
|
|
204 |
|
205 |
submit_btn.click(
|
206 |
fn=run_forecast,
|
|
|
213 |
outputs=[eval_output, forecast_output, plot_output, message_output, window_selector]
|
214 |
)
|
215 |
|
216 |
+
window_selector.change(fn=create_forecast_plot, inputs=window_selector, outputs=plot_output)
|
217 |
+
|
218 |
if __name__ == "__main__":
|
219 |
app.launch(share=False)
|
|
|
|
|
|