fmegahed commited on
Commit
b8d3576
·
verified ·
1 Parent(s): 116201b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import open_clip
4
+ from PIL import Image
5
+ from classifier import few_shot_fault_classification
6
+
7
+ # Load lightweight CLIP model
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ model, _, preprocess = open_clip.create_model_and_transforms('RN50', pretrained='openai')
10
+ model = model.to(device)
11
+ model.eval()
12
+
13
+ st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)")
14
+
15
+ st.markdown("Upload **10 Nominal Images**, **10 Defective Images**, and one or more **Test Images** to classify.")
16
+
17
+ col1, col2 = st.columns(2)
18
+ with col1:
19
+ nominal_files = st.file_uploader("Upload Nominal Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
20
+ with col2:
21
+ defective_files = st.file_uploader("Upload Defective Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
22
+
23
+ test_files = st.file_uploader("Upload Test Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
24
+
25
+ if st.button("Classify Test Images"):
26
+ if len(nominal_files) < 1 or len(defective_files) < 1 or len(test_files) < 1:
27
+ st.warning("Please upload at least 1 image in each category.")
28
+ else:
29
+ st.info("Running classification...")
30
+
31
+ nominal_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in nominal_files]
32
+ defective_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in defective_files]
33
+ test_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in test_files]
34
+
35
+ results = few_shot_fault_classification(
36
+ model=model,
37
+ test_images=[img.squeeze(0) for img in test_imgs],
38
+ test_image_filenames=[f.name for f in test_files],
39
+ nominal_images=[img.squeeze(0) for img in nominal_imgs],
40
+ nominal_descriptions=[f.name for f in nominal_files],
41
+ defective_images=[img.squeeze(0) for img in defective_imgs],
42
+ defective_descriptions=[f.name for f in defective_files],
43
+ num_few_shot_nominal_imgs=len(nominal_files),
44
+ device=device
45
+ )
46
+
47
+ for res in results:
48
+ st.write(f"**{res['image_path']}** ➜ {res['classification_result']} "
49
+ f"(Nominal: {res['non_defect_prob']}, Defective: {res['defect_prob']})")