Update classifier.py
Browse files- classifier.py +62 -8
classifier.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
import torch.nn.functional as F
|
3 |
from datetime import datetime
|
4 |
import os
|
|
|
5 |
|
6 |
def few_shot_fault_classification(
|
7 |
model,
|
@@ -17,63 +18,116 @@ def few_shot_fault_classification(
|
|
17 |
file_name: str = 'image_classification_results.csv',
|
18 |
print_one_liner: bool = False
|
19 |
):
|
|
|
|
|
|
|
|
|
20 |
if not isinstance(test_images, list):
|
21 |
test_images = [test_images]
|
22 |
if not isinstance(test_image_filenames, list):
|
23 |
test_image_filenames = [test_image_filenames]
|
24 |
if not isinstance(nominal_images, list):
|
25 |
nominal_images = [nominal_images]
|
|
|
|
|
26 |
if not isinstance(defective_images, list):
|
27 |
defective_images = [defective_images]
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
29 |
csv_file = os.path.join(file_path, file_name)
|
30 |
results = []
|
31 |
|
32 |
with torch.no_grad():
|
|
|
33 |
nominal_features = torch.stack([model.encode_image(img.to(device)) for img in nominal_images])
|
34 |
nominal_features /= nominal_features.norm(dim=-1, keepdim=True)
|
35 |
|
|
|
36 |
defective_features = torch.stack([model.encode_image(img.to(device)) for img in defective_images])
|
37 |
defective_features /= defective_features.norm(dim=-1, keepdim=True)
|
38 |
|
|
|
|
|
|
|
|
|
39 |
for idx, test_img in enumerate(test_images):
|
40 |
test_features = model.encode_image(test_img.to(device))
|
41 |
test_features /= test_features.norm(dim=-1, keepdim=True)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
|
|
46 |
for i in range(nominal_features.shape[0]):
|
47 |
similarity = (test_features @ nominal_features[i].T).item()
|
48 |
if similarity > max_nominal_similarity:
|
49 |
max_nominal_similarity = similarity
|
50 |
max_nominal_idx = i
|
51 |
|
|
|
52 |
for j in range(defective_features.shape[0]):
|
53 |
similarity = (test_features @ defective_features[j].T).item()
|
54 |
if similarity > max_defective_similarity:
|
55 |
max_defective_similarity = similarity
|
56 |
max_defective_idx = j
|
57 |
|
|
|
58 |
similarities = torch.tensor([max_nominal_similarity, max_defective_similarity])
|
59 |
probabilities = F.softmax(similarities, dim=0).tolist()
|
|
|
|
|
60 |
|
61 |
-
|
|
|
62 |
|
|
|
63 |
result = {
|
64 |
"datetime_of_operation": datetime.now().isoformat(),
|
|
|
65 |
"image_path": test_image_filenames[idx],
|
|
|
66 |
"classification_result": classification,
|
67 |
-
"non_defect_prob": round(
|
68 |
-
"defect_prob": round(
|
69 |
"nominal_description": nominal_descriptions[max_nominal_idx],
|
70 |
"defective_description": defective_descriptions[max_defective_idx],
|
|
|
|
|
71 |
}
|
72 |
-
|
|
|
73 |
results.append(result)
|
74 |
|
|
|
75 |
if print_one_liner:
|
76 |
print(f"{test_image_filenames[idx]} → {classification} "
|
77 |
-
f"(Nominal: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
return results
|
|
|
2 |
import torch.nn.functional as F
|
3 |
from datetime import datetime
|
4 |
import os
|
5 |
+
import csv
|
6 |
|
7 |
def few_shot_fault_classification(
|
8 |
model,
|
|
|
18 |
file_name: str = 'image_classification_results.csv',
|
19 |
print_one_liner: bool = False
|
20 |
):
|
21 |
+
"""
|
22 |
+
Classify test images as nominal or defective based on similarity to nominal and defective images.
|
23 |
+
"""
|
24 |
+
# Ensure inputs are lists
|
25 |
if not isinstance(test_images, list):
|
26 |
test_images = [test_images]
|
27 |
if not isinstance(test_image_filenames, list):
|
28 |
test_image_filenames = [test_image_filenames]
|
29 |
if not isinstance(nominal_images, list):
|
30 |
nominal_images = [nominal_images]
|
31 |
+
if not isinstance(nominal_descriptions, list):
|
32 |
+
nominal_descriptions = [nominal_descriptions]
|
33 |
if not isinstance(defective_images, list):
|
34 |
defective_images = [defective_images]
|
35 |
+
if not isinstance(defective_descriptions, list):
|
36 |
+
defective_descriptions = [defective_descriptions]
|
37 |
|
38 |
+
# Ensure the output directory exists
|
39 |
+
os.makedirs(file_path, exist_ok=True)
|
40 |
+
|
41 |
+
# Prepare full path for the CSV file
|
42 |
csv_file = os.path.join(file_path, file_name)
|
43 |
results = []
|
44 |
|
45 |
with torch.no_grad():
|
46 |
+
# Encode nominal images
|
47 |
nominal_features = torch.stack([model.encode_image(img.to(device)) for img in nominal_images])
|
48 |
nominal_features /= nominal_features.norm(dim=-1, keepdim=True)
|
49 |
|
50 |
+
# Encode defective images
|
51 |
defective_features = torch.stack([model.encode_image(img.to(device)) for img in defective_images])
|
52 |
defective_features /= defective_features.norm(dim=-1, keepdim=True)
|
53 |
|
54 |
+
# Prepare list to save data for CSV
|
55 |
+
csv_data = []
|
56 |
+
|
57 |
+
# Process each test image
|
58 |
for idx, test_img in enumerate(test_images):
|
59 |
test_features = model.encode_image(test_img.to(device))
|
60 |
test_features /= test_features.norm(dim=-1, keepdim=True)
|
61 |
|
62 |
+
# Initialize variables to store max similarities and indices
|
63 |
+
max_nominal_similarity = -float('inf')
|
64 |
+
max_defective_similarity = -float('inf')
|
65 |
+
max_nominal_idx = -1
|
66 |
+
max_defective_idx = -1
|
67 |
|
68 |
+
# Loop through each nominal image to find max similarity
|
69 |
for i in range(nominal_features.shape[0]):
|
70 |
similarity = (test_features @ nominal_features[i].T).item()
|
71 |
if similarity > max_nominal_similarity:
|
72 |
max_nominal_similarity = similarity
|
73 |
max_nominal_idx = i
|
74 |
|
75 |
+
# Loop through each defective image to find max similarity
|
76 |
for j in range(defective_features.shape[0]):
|
77 |
similarity = (test_features @ defective_features[j].T).item()
|
78 |
if similarity > max_defective_similarity:
|
79 |
max_defective_similarity = similarity
|
80 |
max_defective_idx = j
|
81 |
|
82 |
+
# Convert similarities to probabilities
|
83 |
similarities = torch.tensor([max_nominal_similarity, max_defective_similarity])
|
84 |
probabilities = F.softmax(similarities, dim=0).tolist()
|
85 |
+
prob_not_defective = probabilities[0]
|
86 |
+
prob_defective = probabilities[1]
|
87 |
|
88 |
+
# Determine classification result
|
89 |
+
classification = "Defective" if prob_defective > prob_not_defective else "Nominal"
|
90 |
|
91 |
+
# Create result dict
|
92 |
result = {
|
93 |
"datetime_of_operation": datetime.now().isoformat(),
|
94 |
+
"num_few_shot_nominal_imgs": num_few_shot_nominal_imgs,
|
95 |
"image_path": test_image_filenames[idx],
|
96 |
+
"image_name": test_image_filenames[idx].split('/')[-1],
|
97 |
"classification_result": classification,
|
98 |
+
"non_defect_prob": round(prob_not_defective, 3),
|
99 |
+
"defect_prob": round(prob_defective, 3),
|
100 |
"nominal_description": nominal_descriptions[max_nominal_idx],
|
101 |
"defective_description": defective_descriptions[max_defective_idx],
|
102 |
+
"max_nominal_similarity": round(max_nominal_similarity, 3),
|
103 |
+
"max_defective_similarity": round(max_defective_similarity, 3)
|
104 |
}
|
105 |
+
|
106 |
+
csv_data.append(result)
|
107 |
results.append(result)
|
108 |
|
109 |
+
# Optionally print one-liner summary for each test image
|
110 |
if print_one_liner:
|
111 |
print(f"{test_image_filenames[idx]} → {classification} "
|
112 |
+
f"(Nominal: {prob_not_defective:.3f}, Defective: {prob_defective:.3f})")
|
113 |
+
|
114 |
+
# Write to CSV (append mode if file exists, write mode if not)
|
115 |
+
file_exists = os.path.isfile(csv_file)
|
116 |
+
with open(csv_file, mode='a' if file_exists else 'w', newline='') as file:
|
117 |
+
fieldnames = [
|
118 |
+
"datetime_of_operation", "num_few_shot_nominal_imgs", "image_path", "image_name",
|
119 |
+
"classification_result", "non_defect_prob", "defect_prob",
|
120 |
+
"nominal_description", "defective_description",
|
121 |
+
"max_nominal_similarity", "max_defective_similarity"
|
122 |
+
]
|
123 |
+
writer = csv.DictWriter(file, fieldnames=fieldnames)
|
124 |
+
|
125 |
+
# Write header if file doesn't exist
|
126 |
+
if not file_exists:
|
127 |
+
writer.writeheader()
|
128 |
+
|
129 |
+
# Write each row of data
|
130 |
+
for row in csv_data:
|
131 |
+
writer.writerow(row)
|
132 |
|
133 |
+
return results
|