File size: 3,185 Bytes
116201b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn.functional as F
from datetime import datetime
import os

def few_shot_fault_classification(
    model,
    test_images,
    test_image_filenames,
    nominal_images,
    nominal_descriptions,
    defective_images,
    defective_descriptions,
    num_few_shot_nominal_imgs: int,
    device="cpu",
    file_path: str = '.',
    file_name: str = 'image_classification_results.csv',
    print_one_liner: bool = False
):
    if not isinstance(test_images, list):
        test_images = [test_images]
    if not isinstance(test_image_filenames, list):
        test_image_filenames = [test_image_filenames]
    if not isinstance(nominal_images, list):
        nominal_images = [nominal_images]
    if not isinstance(defective_images, list):
        defective_images = [defective_images]

    csv_file = os.path.join(file_path, file_name)
    results = []

    with torch.no_grad():
        nominal_features = torch.stack([model.encode_image(img.to(device)) for img in nominal_images])
        nominal_features /= nominal_features.norm(dim=-1, keepdim=True)

        defective_features = torch.stack([model.encode_image(img.to(device)) for img in defective_images])
        defective_features /= defective_features.norm(dim=-1, keepdim=True)

        for idx, test_img in enumerate(test_images):
            test_features = model.encode_image(test_img.to(device))
            test_features /= test_features.norm(dim=-1, keepdim=True)

            max_nominal_similarity = max_defective_similarity = -float('inf')
            max_nominal_idx = max_defective_idx = -1

            for i in range(nominal_features.shape[0]):
                similarity = (test_features @ nominal_features[i].T).item()
                if similarity > max_nominal_similarity:
                    max_nominal_similarity = similarity
                    max_nominal_idx = i

            for j in range(defective_features.shape[0]):
                similarity = (test_features @ defective_features[j].T).item()
                if similarity > max_defective_similarity:
                    max_defective_similarity = similarity
                    max_defective_idx = j

            similarities = torch.tensor([max_nominal_similarity, max_defective_similarity])
            probabilities = F.softmax(similarities, dim=0).tolist()

            classification = "Defective" if probabilities[1] > probabilities[0] else "Nominal"

            result = {
                "datetime_of_operation": datetime.now().isoformat(),
                "image_path": test_image_filenames[idx],
                "classification_result": classification,
                "non_defect_prob": round(probabilities[0], 3),
                "defect_prob": round(probabilities[1], 3),
                "nominal_description": nominal_descriptions[max_nominal_idx],
                "defective_description": defective_descriptions[max_defective_idx],
            }

            results.append(result)

            if print_one_liner:
                print(f"{test_image_filenames[idx]}{classification} "
                      f"(Nominal: {probabilities[0]:.3f}, Defective: {probabilities[1]:.3f})")

    return results