import torch from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer from datasets import load_dataset # 1️⃣ Modell & Tokenizer laden model_name = "allenai/scibert_scivocab_uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) # 2️⃣ Dataset laden (mit spezifischer Konfiguration: "arxiv" oder "pubmed") dataset = load_dataset("armanc/scientific_papers", "arxiv", trust_remote_code=True) # Oder "pubmed" # 3️⃣ Tokenisierung der Texte def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # 4️⃣ Trainingsparameter setzen training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", save_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", ) # 5️⃣ Training starten trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], ) trainer.train() # 6️⃣ Speichern des Modells nach dem Training model.save_pretrained("./trained_model") tokenizer.save_pretrained("./trained_model") print("✅ Training abgeschlossen! Modell gespeichert.")