Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import arxiv | |
import random | |
import datetime | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from groq import Groq | |
# ------------------------------- | |
# Initialize Groq API Client | |
# ------------------------------- | |
client = Groq( | |
api_key=os.environ.get("GROQ_API_KEY"), | |
) | |
# ------------------------------- | |
# Helper Functions | |
# ------------------------------- | |
def groq_summarize(text: str) -> str: | |
"""Summarize the given text using Groq's chat completion API.""" | |
response = client.chat.completions.create( | |
messages=[{"role": "user", "content": f"Summarize the following text:\n\n{text}"}], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content.strip() | |
def retrieve_papers(query=None, max_results=5): | |
"""Retrieve academic papers from arXiv.""" | |
if query: | |
search = arxiv.Search(query=query, max_results=max_results) | |
else: | |
search = arxiv.Search(sort_by=arxiv.SortCriterion.SubmittedDate, max_results=max_results) | |
papers = [] | |
for result in search.results(): | |
paper_id = result.entry_id.split("/")[-1] | |
paper = { | |
"title": result.title, | |
"summary": result.summary, | |
"url": result.pdf_url, | |
"authors": [author.name for author in result.authors], | |
"published": result.published, | |
"arxiv_id": paper_id, | |
"doi": f"https://doi.org/10.48550/arXiv.{paper_id}", | |
"abs_url": f"https://arxiv.org/abs/{paper_id}", | |
"bib_explorer": f"https://arxiv.org/abs/{paper_id}", | |
"connected_papers": f"https://www.connectedpapers.com/{paper_id}", | |
"litmaps": f"https://app.litmaps.com/preview/{paper_id}", | |
"scite_ai": f"https://scite.ai/reports/{paper_id}" | |
} | |
papers.append(paper) | |
return papers | |
def calculate_scores(paper): | |
"""Generate Trust & Relevance Scores.""" | |
return { | |
"trust_score": round(random.uniform(60, 95), 1), | |
"relevance_score": round(random.uniform(50, 100), 1) | |
} | |
def get_cached_summary(paper_id, text): | |
"""Retrieve or create a cached summary for a given paper.""" | |
if 'summaries' not in st.session_state: | |
st.session_state.summaries = {} | |
if paper_id not in st.session_state.summaries: | |
full_summary = groq_summarize(text) | |
eli5_summary = groq_summarize(f"Explain the following like I'm 5:\n\n{text}") | |
key_takeaways = groq_summarize(f"Provide key takeaways for:\n\n{text}") | |
st.session_state.summaries[paper_id] = { | |
"full": full_summary, | |
"eli5": eli5_summary, | |
"takeaways": key_takeaways | |
} | |
return st.session_state.summaries[paper_id] | |
# ------------------------------- | |
# Streamlit UI | |
# ------------------------------- | |
st.title("π PaperPilot β Intelligent Academic Navigator") | |
with st.sidebar: | |
st.header("π Search Parameters") | |
query = st.text_input("Research topic or question:") | |
random_search = st.button("π² Random Papers") | |
if st.button("π Find Articles") or random_search: | |
with st.spinner("Searching arXiv..."): | |
if random_search: | |
papers = retrieve_papers(max_results=random.randint(5, 15)) | |
else: | |
papers = retrieve_papers(query) | |
if papers: | |
st.session_state.papers = papers | |
st.success(f"Found {len(papers)} papers!") | |
st.session_state.active_section = "articles" | |
else: | |
st.error("No papers found. Try different keywords.") | |
if 'papers' in st.session_state and st.session_state.papers: | |
papers = st.session_state.papers | |
st.header("π Retrieved Papers") | |
for idx, paper in enumerate(papers, 1): | |
with st.expander(f"{idx}. {paper['title']}"): | |
scores = calculate_scores(paper) | |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}") | |
pub_date = paper['published'].strftime('%Y-%m-%d') if isinstance(paper['published'], datetime.datetime) else "n.d." | |
st.markdown(f"**Published:** {pub_date}") | |
st.markdown(f"**DOI:** [Link]({paper['doi']})") | |
st.markdown(f"**Original Paper:** [arXiv]({paper['abs_url']})") | |
st.markdown(f"**Bibliographic Explorer:** [Explore]({paper['bib_explorer']})") | |
st.markdown(f"**Connected Papers:** [View]({paper['connected_papers']})") | |
st.markdown(f"**Litmaps:** [Preview]({paper['litmaps']})") | |
st.markdown(f"**scite.ai:** [Smart Citations]({paper['scite_ai']})") | |
st.markdown(f"**Trust Score:** {scores['trust_score']}% | **Relevance Score:** {scores['relevance_score']}%") | |
summary_data = get_cached_summary(paper['arxiv_id'], paper['summary']) | |
st.subheader("π Summary") | |
st.write(summary_data['full']) | |
st.subheader("π§ ELI5 Explanation") | |
st.write(summary_data['eli5']) | |
st.subheader("π Key Takeaways") | |
st.write(summary_data['takeaways']) | |
else: | |
st.info("Enter a query or click the dice icon to fetch random papers!") | |
st.caption("Built with β€οΈ using AI") |