Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import arxiv | |
import random | |
import datetime | |
# ------------------------------- | |
# Groq API Client | |
# ------------------------------- | |
from groq import Groq | |
client = Groq( | |
api_key=os.environ.get("GROQ_API_KEY"), | |
) | |
# ------------------------------- | |
# Helper Functions (Groq-based) | |
# ------------------------------- | |
def groq_summarize(text: str) -> str: | |
""" | |
Summarize the given text using Groq's chat completion API. | |
""" | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Summarize this paper in one sentence and provide 3 key takeaways:\n\n{text}" | |
} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content.strip() | |
def groq_eli5(text: str) -> str: | |
""" | |
Explain the paper like I'm 5 years old. | |
""" | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Explain this paper as if I were 5 years old in one sentence:\n\n{text}" | |
} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
return response.choices[0].message.content.strip() | |
def calculate_scores(paper): | |
""" | |
Generate trust and relevance scores for a paper. | |
""" | |
trust_score = random.randint(5, 10) # Placeholder, can be improved with citations data | |
relevance_score = random.randint(5, 10) # Placeholder, can use NLP topic matching | |
return trust_score, relevance_score | |
def retrieve_papers(query=None, max_results=10, random_mode=False): | |
""" | |
Retrieve academic papers from arXiv, either based on search or randomly. | |
""" | |
if random_mode: | |
query = "" # Empty query fetches random results | |
search = arxiv.Search(query=query, max_results=max_results) | |
papers = [] | |
for result in search.results(): | |
trust_score, relevance_score = calculate_scores(result) | |
paper = { | |
"title": result.title, | |
"summary": result.summary, | |
"url": result.pdf_url, | |
"authors": [author.name for author in result.authors], | |
"published": result.published.strftime('%Y-%m-%d') if isinstance(result.published, datetime.datetime) else "n.d.", | |
"doi": f"https://doi.org/10.48550/arXiv.{result.entry_id.split('/')[-1]}", | |
"bib_explorer": f"https://arxiv.org/abs/{result.entry_id.split('/')[-1]}", | |
"litmaps": f"https://app.litmaps.com/preview/{result.entry_id.split('/')[-1]}", | |
"connected_papers": f"https://www.connectedpapers.com/{result.entry_id.split('/')[-1]}", | |
"trust_score": trust_score, | |
"relevance_score": relevance_score | |
} | |
papers.append(paper) | |
return papers | |
# ------------------------------- | |
# Streamlit Interface | |
# ------------------------------- | |
st.title("π PaperPilot β Intelligent Academic Navigator") | |
with st.sidebar: | |
st.header("π Search Parameters") | |
query = st.text_input("Research topic or question:") | |
col1, col2 = st.columns([4, 1]) | |
with col1: | |
search_button = st.button("π Find Articles") | |
with col2: | |
random_button = st.button("π² Random Papers") | |
if search_button: | |
if query.strip(): | |
with st.spinner("Searching arXiv..."): | |
st.session_state.papers = retrieve_papers(query=query, max_results=10) | |
st.success(f"Found {len(st.session_state.papers)} papers!") | |
else: | |
st.warning("Please enter a search query") | |
if random_button: | |
with st.spinner("Fetching random papers..."): | |
st.session_state.papers = retrieve_papers(max_results=random.randint(5, 15), random_mode=True) | |
st.success(f"Fetched {len(st.session_state.papers)} random papers!") | |
if 'papers' in st.session_state and st.session_state.papers: | |
st.header("π Retrieved Papers") | |
for idx, paper in enumerate(st.session_state.papers, 1): | |
with st.expander(f"{idx}. {paper['title']}"): | |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}") | |
st.markdown(f"**Published:** {paper['published']}") | |
st.markdown(f"**[PDF Link]({paper['url']})** | **[DOI]({paper['doi']})** | **[Bib Explorer]({paper['bib_explorer']})** | **[Litmaps]({paper['litmaps']})** | **[Connected Papers]({paper['connected_papers']})**") | |
with st.spinner("Generating summaries..."): | |
summary = groq_summarize(paper['summary']) | |
eli5_summary = groq_eli5(paper['summary']) | |
st.markdown(f"**Summary:** {summary}") | |
st.markdown(f"**ELI5:** {eli5_summary}") | |
st.markdown(f"**Trust Score:** {paper['trust_score']} / 10 β | **Relevance Score:** {paper['relevance_score']} / 10 π₯") | |
else: | |
st.info("Enter a query or click π² Random Papers to get started.") | |