File size: 20,697 Bytes
1d30073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
from typing import Optional, Tuple

import jax
import jax.numpy as jnp
from jax.random import PRNGKey
import flax.linen as nn
from flax.core.frozen_dict import FrozenDict, unfreeze

from transformers.modeling_flax_outputs import FlaxCausalLMOutputWithCrossAttentions
from transformers.file_utils import add_start_docstrings
from transformers.modeling_flax_utils import FlaxPreTrainedModel
from transformers.models.t5.modeling_flax_t5 import FlaxT5ForConditionalGenerationModule

from t5_vae_flax_alt.src.vae import VAE
from t5_vae_flax_alt.src.generate import VaeFlaxGenerationMixin
from t5_vae_flax_alt.src.outputs import TransformerVaeOutput
from t5_vae_flax_alt.src.config import T5VaeConfig


@add_start_docstrings("""T5 Model with a `language modeling` head on top converted into a VAE.""")
class FlaxT5VaeForAutoencodingModule(nn.Module):
    config: T5VaeConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def _get_encoder_module(self):
        return self.t5.encoder

    def _get_vae_encoder_module(self):
        return self.vae.encoder

    def _get_vae_decoder_module(self):
        return self.vae.decoder

    def _get_decoder_module(self):
        return self.t5.decoder

    def setup(self):
        self.t5 = FlaxT5ForConditionalGenerationModule(self.config.t5)
        self.vae = VAE(self.config)

    def __call__(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        encoder_outputs=None,
        latent_codes=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        deterministic: bool = True,
    ):
        """
            Adapted from `FlaxT5ForConditionalGenerationModule`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Encode
        encoder_outputs = self.t5.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        hidden_states = encoder_outputs[0]

        # Autoencode
        hidden_states, latent_codes = self.vae(hidden_states, latent_codes)
        encoder_attention_mask = jnp.ones((hidden_states.shape[0], hidden_states.shape[1]))

        # Decode
        decoder_outputs = self.t5.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        sequence_output = decoder_outputs[0]

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
            sequence_output = sequence_output * (self.config.t5.d_model ** -0.5)

        if self.t5.config.tie_word_embeddings:
            shared_embedding = self.t5.shared.variables["params"]["embedding"]
            lm_logits = self.t5.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
        else:
            lm_logits = self.t5.lm_head(sequence_output)

        if not return_dict:
            return [lm_logits, latent_codes] + decoder_outputs[1:] + encoder_outputs

        return TransformerVaeOutput(
            logits=lm_logits,
            latent_codes=latent_codes,
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class FlaxT5VaePreTrainedModel(FlaxPreTrainedModel, VaeFlaxGenerationMixin):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = T5VaeConfig
    base_model_prefix = "transformer"
    module_class: nn.Module = None

    def __init__(
        self,
        config: T5VaeConfig,
        input_shape: Tuple[int] = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        **kwargs
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")

        attention_mask = jnp.ones_like(input_ids)
        decoder_input_ids = jnp.ones_like(input_ids)
        decoder_attention_mask = jnp.ones_like(input_ids)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.module.init(
            rngs,
            input_ids,
            attention_mask,
            decoder_input_ids,
            decoder_attention_mask,
        )["params"]

    def __call__(
        self,
        input_ids: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        decoder_input_ids: jnp.ndarray = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if decoder_input_ids is None:
            raise ValueError(
                "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed here."
            )

        # prepare encoder inputs
        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        # prepare decoder inputs
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones_like(decoder_input_ids)

        # Handle any PRNG if needed
        rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

        return self.module.apply(
            {"params": params or self.params},
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
        )

    def init_cache(self, batch_size, max_length, latent_codes):
        r"""
        Args:
            batch_size (:obj:`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (:obj:`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
            latent_codes (:obj:`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
                ``latent_codes`` consists of compressed hidden-states at the output of the last layer of the encoder.
                Used in the cross-attention of the decoder.
        """
        # init input variables to retrieve cache
        decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
        decoder_attention_mask = jnp.ones_like(decoder_input_ids)

        def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
            decoder_module = module._get_decoder_module()
            return decoder_module(
                decoder_input_ids,
                decoder_attention_mask,
                **kwargs,
            )

        init_variables = self.module.init(
            jax.random.PRNGKey(0),
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            init_cache=True,
            method=_decoder_forward,  # we only need to call the decoder to init the cache
        )
        return unfreeze(init_variables["cache"])

    def encode(
        self,
        input_ids: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        raise NotImplementedError()

    def decode(
        self,
        decoder_input_ids,
        latent_codes,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        raise NotImplementedError()


class FlaxT5VaeForAutoencoding(FlaxT5VaePreTrainedModel):
    module_class = FlaxT5VaeForAutoencodingModule

    def __call__(
        self,
        input_ids: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        '''
            Adapted from `FlaxT5PreTrainedModel`
        '''
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if decoder_input_ids is None:
            raise ValueError(
                "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed here."
            )

        # prepare encoder inputs
        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        # prepare decoder inputs
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones_like(decoder_input_ids)

        # Handle any PRNG if needed
        rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

        return self.module.apply(
            {"params": params or self.params},
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
        )

    def encode(
        self,
        input_ids: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        def _encoder_forward(module, input_ids, attention_mask, **kwargs):
            encode_module = module._get_encoder_module()
            vae_encoder_module = module._get_vae_encoder_module()
            return vae_encoder_module(encode_module(input_ids, attention_mask, **kwargs)[0])

        return self.module.apply(
            {"params": params or self.params},
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            method=_encoder_forward,
        )

    def decode(
        self,
        decoder_input_ids,
        latent_codes,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        r"""
        Returns:

        Example::

            >>> model = FlaxT5VaeForAutoencoding.from_pretrained('t5-small')
            >>> tokenizer = T5Tokenizer.from_pretrained('t5-small')

            >>> text = "My friends are cool but they eat too many carbs."
            >>> inputs = tokenizer(text, max_length=512, return_tensors='jax')
            >>> latent_codes = model.encode(**inputs)

            >>> decoder_start_token_id = model.config.decoder_start_token_id
            >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

            >>> outputs = model.decode(decoder_input_ids, latent_codes)
            >>> last_decoder_hidden_states = outputs.last_hidden_state
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if encoder_attention_mask is None:
            batch_size, sequence_length = latent_codes.shape[:2]
            encoder_attention_mask = jnp.ones((batch_size, sequence_length))

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxT5Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(module, decoder_input_ids, latent_codes, decoder_attention_mask, **kwargs):
            vae_decoder_module = module._get_vae_decoder_module()
            decoder_module = module._get_decoder_module()
            decoder_outputs = decoder_module(
                decoder_input_ids,
                decoder_attention_mask,
                encoder_hidden_states=vae_decoder_module(latent_codes),
                **kwargs,
            )
            sequence_output = decoder_outputs[0]

            if self.config.tie_word_embeddings:
                # Rescale output before projecting on vocab
                # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
                sequence_output = sequence_output * (self.config.t5.d_model ** -0.5)

            if self.config.tie_word_embeddings:
                shared_embedding = module.t5.shared.variables["params"]["embedding"]
                lm_logits = module.t5.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
            else:
                lm_logits = module.t5.lm_head(sequence_output)

            return lm_logits, decoder_outputs

        outputs = self.module.apply(
            inputs,
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            latent_codes=latent_codes,
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        if past_key_values is None:
            lm_logits, decoder_outputs = outputs
        else:
            (lm_logits, decoder_outputs), past = outputs

        if return_dict:
            outputs = FlaxCausalLMOutputWithCrossAttentions(
                logits=lm_logits,
                hidden_states=decoder_outputs.hidden_states,
                attentions=decoder_outputs.attentions,
                cross_attentions=decoder_outputs.cross_attentions,
            )
        else:
            outputs = (lm_logits,) + decoder_outputs[1:]

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        max_length,
        attention_mask: Optional[jnp.DeviceArray] = None,
        decoder_attention_mask: Optional[jnp.DeviceArray] = None,
        latent_codes=None,
        **kwargs
    ):
        # initializing the cache
        batch_size, seq_length = decoder_input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length, latent_codes)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since the decoder uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if decoder_attention_mask is not None:
            extended_attention_mask = jax.lax.dynamic_update_slice(
                extended_attention_mask, decoder_attention_mask, (0, 0)
            )

        return {
            "past_key_values": past_key_values,
            "latent_codes": latent_codes,
            "encoder_attention_mask": attention_mask,
            "decoder_attention_mask": extended_attention_mask,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        return model_kwargs