File size: 2,976 Bytes
a081ff4
f0a45da
321a2ed
 
a081ff4
 
6842806
 
ea72ee8
ced24dc
a081ff4
 
321a2ed
 
f0a45da
 
321a2ed
a9a0b5c
321a2ed
a9a0b5c
f0a45da
 
 
321a2ed
 
 
 
 
 
 
 
 
f0a45da
a081ff4
23a6073
f0a45da
 
321a2ed
f0a45da
 
 
 
6842806
f0a45da
 
 
 
 
321a2ed
 
 
 
f0a45da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321a2ed
 
f0a45da
a081ff4
23a6073
f0a45da
 
 
321a2ed
f0a45da
 
053fdea
23a6073
 
321a2ed
 
f0a45da
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr

from rich.console import Console
from rich.syntax import Syntax
from transformers import AutoModelForCausalLM, AutoTokenizer

# model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

console = Console(record=True)


def format_input(question, starter_code=""):
    answer_type = (
        "\nUse Call-Based format\n" if starter_code else "\nUse Standard Input format\n"
    )
    return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"


def format_outputs(text):
    formatted_text = Syntax(
        text, "python", line_numbers=True, indent_guides=True, word_wrap=True
    )
    console.print(formatted_text)

    return console.export_html(inline_styles=True)


def generate_solution(question, starter_code="", temperature=1.0, num_beams=1):
    prompt = format_input(question, starter_code)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    start = len(input_ids[0])
    output = model.generate(
        input_ids,
        max_length=start + 200,
        do_sample=True,
        top_p=0.95,
        pad_token_id=tokenizer.pad_token_id,
        early_stopping=True,
        temperature=temperature,
        num_beams=int(num_beams),
        no_repeat_ngram_size=None,
        repetition_penalty=None,
        num_return_sequences=None,
    )

    return format_outputs(
        tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
    )


_EXAMPLES = [
    [
        """
Given a 2D list of size `m * n`. Your task is to find the sum of minimum value in each row.
For Example:
```python
[
  [1, 2, 3, 4, 5],       # minimum value of row is 1
  [5, 6, 7, 8, 9],       # minimum value of row is 5
  [20, 21, 34, 56, 100]  # minimum value of row is 20
]
```
So, the function should return `26` because sum of minimums is as `1 + 5 + 20 = 26`
        """,
        "",
        0.8,
    ],
    [
        """
# Personalized greeting

Create a function that gives a personalized greeting. This function takes two parameters: `name` and `owner`.
        """,
        """
Use conditionals to return the proper message:

case| return
--- | ---
name equals owner | 'Hello boss'
otherwise         | 'Hello guest'
def greet(name, owner):
        """,
        0.8,
    ],
]


inputs = [
    gr.inputs.Textbox(placeholder="Define a problem here...", lines=7),
    gr.inputs.Textbox(placeholder="Provide optional starter code...", lines=3),
    gr.inputs.Slider(0.5, 1.5, 0.1, default=0.8, label="Temperature"),
    gr.inputs.Slider(1, 4, 1, default=1, label="Beam size"),
]

outputs = [gr.outputs.HTML(label="Solution")]

gr.Interface(
    generate_solution,
    inputs=inputs,
    outputs=outputs,
    title="Code Clippy: Problem Solver",
    examples=_EXAMPLES,
).launch(share=False)