Spaces:
Build error
Build error
File size: 3,390 Bytes
19677a1 0d35ba8 19677a1 e4b8bbd baad652 19677a1 0d35ba8 0071656 19677a1 0071656 13bc063 0d35ba8 e4b8bbd a0a54d5 0071656 bd597e9 baad652 a0a54d5 bd597e9 19677a1 fd209d1 bb689c9 a0a54d5 fd209d1 a0a54d5 fd209d1 7a6388a 0d35ba8 a0a54d5 0d35ba8 0071656 19677a1 a0a54d5 19677a1 a0a54d5 0d35ba8 19677a1 e4b8bbd 6cbae78 baad652 6cbae78 5272de4 4f54252 c1f7cd5 4f54252 5272de4 0071656 13bc063 1b312d9 baad652 1b312d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import os
import builtins
import math
import json
import streamlit as st
import gdown
from demo.src.models import load_trained_model
from demo.src.utils import render_predict_from_pose, predict_to_image
st.set_page_config(page_title="DietNeRF")
with open("config.json") as f:
cfg = json.loads(f.read())
MODEL_DIR = "models"
def select_model():
obj_select = st.selectbox("Select a Scene", ("Mic", "Chair", "Lego", "Ship", "Hotdog"))
DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"]
DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"]
return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID
st.title("DietNeRF")
caption = (
"DietNeRF achieves SoTA few-shot learning capacity in 3D model reconstruction. "
"Thanks to the 2D supervision by CLIP (aka. _Semantic Consisteny Loss_), "
"it can render novel and challenging views with ONLY 8 training images, "
"outperforming original NeRF!"
)
st.markdown(caption)
st.markdown("")
DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID = select_model()
@st.cache(show_spinner=False)
def download_model():
os.makedirs(MODEL_DIR, exist_ok=True)
_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}"
gdown.download(url, _model_path, quiet=False)
print(f"Model downloaded from google drive: {_model_path}")
@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_model():
model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME)
return model, state
model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
if not os.path.isfile(model_path):
download_model()
model, state = fetch_model()
pi = math.pi
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="430" height="400"/>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
<p style='text-align: center'>
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.header("SELECT YOUR VIEW DIRECTION")
theta = st.sidebar.slider(
"Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction"
)
phi = st.sidebar.slider(
"Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction"
)
radius = st.sidebar.slider(
"Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer"
)
st.markdown("")
with st.spinner("Rendering View..."):
with st.spinner("It may take 2-3 mins. So, why don't you read our report in the meantime"):
pred_color, _ = render_predict_from_pose(state, theta, phi, radius)
im = predict_to_image(pred_color)
w, _ = im.size
new_w = int(2 * w)
im = im.resize(size=(new_w, new_w))
# diet_nerf_col = st.beta_columns(1)
# diet_nerf_col.markdown(
# """<h4 style='text-align: center'>DietNerF</h4>""", unsafe_allow_html=True
# )
st.image(im, use_column_width="auto")
|