Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
from kokoro import KModel, KPipeline
|
3 |
-
import gradio as gr
|
4 |
-
import os
|
5 |
-
import random
|
6 |
-
import torch
|
7 |
-
|
8 |
-
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
9 |
-
CUDA_AVAILABLE = torch.cuda.is_available()
|
10 |
-
if not IS_DUPLICATE:
|
11 |
-
import kokoro
|
12 |
-
import misaki
|
13 |
-
print('DEBUG', kokoro.__version__, CUDA_AVAILABLE, misaki.__version__)
|
14 |
-
|
15 |
-
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
16 |
-
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
17 |
-
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
18 |
-
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
19 |
-
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
20 |
-
|
21 |
-
@spaces.GPU(duration=30)
|
22 |
-
def forward_gpu(ps, ref_s, speed):
|
23 |
-
return models[True](ps, ref_s, speed)
|
24 |
-
|
25 |
-
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
26 |
-
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
27 |
-
pipeline = pipelines[voice[0]]
|
28 |
-
pack = pipeline.load_voice(voice)
|
29 |
-
use_gpu = use_gpu and CUDA_AVAILABLE
|
30 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
31 |
-
ref_s = pack[len(ps)-1]
|
32 |
-
try:
|
33 |
-
if use_gpu:
|
34 |
-
audio = forward_gpu(ps, ref_s, speed)
|
35 |
-
else:
|
36 |
-
audio = models[False](ps, ref_s, speed)
|
37 |
-
except gr.exceptions.Error as e:
|
38 |
-
if use_gpu:
|
39 |
-
gr.Warning(str(e))
|
40 |
-
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
|
41 |
-
audio = models[False](ps, ref_s, speed)
|
42 |
-
else:
|
43 |
-
raise gr.Error(e)
|
44 |
-
return (24000, audio.numpy()), ps
|
45 |
-
return None, ''
|
46 |
-
|
47 |
-
# Arena API
|
48 |
-
def predict(text, voice='af_heart', speed=1):
|
49 |
-
return generate_first(text, voice, speed, use_gpu=False)[0]
|
50 |
-
|
51 |
-
def tokenize_first(text, voice='af_heart'):
|
52 |
-
pipeline = pipelines[voice[0]]
|
53 |
-
for _, ps, _ in pipeline(text, voice):
|
54 |
-
return ps
|
55 |
-
return ''
|
56 |
-
|
57 |
-
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
58 |
-
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
59 |
-
pipeline = pipelines[voice[0]]
|
60 |
-
pack = pipeline.load_voice(voice)
|
61 |
-
use_gpu = use_gpu and CUDA_AVAILABLE
|
62 |
-
first = True
|
63 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
64 |
-
ref_s = pack[len(ps)-1]
|
65 |
-
try:
|
66 |
-
if use_gpu:
|
67 |
-
audio = forward_gpu(ps, ref_s, speed)
|
68 |
-
else:
|
69 |
-
audio = models[False](ps, ref_s, speed)
|
70 |
-
except gr.exceptions.Error as e:
|
71 |
-
if use_gpu:
|
72 |
-
gr.Warning(str(e))
|
73 |
-
gr.Info('Switching to CPU')
|
74 |
-
audio = models[False](ps, ref_s, speed)
|
75 |
-
else:
|
76 |
-
raise gr.Error(e)
|
77 |
-
yield 24000, audio.numpy()
|
78 |
-
if first:
|
79 |
-
first = False
|
80 |
-
yield 24000, torch.zeros(1).numpy()
|
81 |
-
|
82 |
-
with open('en.txt', 'r') as r:
|
83 |
-
random_quotes = [line.strip() for line in r]
|
84 |
-
|
85 |
-
def get_random_quote():
|
86 |
-
return random.choice(random_quotes)
|
87 |
-
|
88 |
-
def get_gatsby():
|
89 |
-
with open('gatsby5k.md', 'r') as r:
|
90 |
-
return r.read().strip()
|
91 |
-
|
92 |
-
def get_frankenstein():
|
93 |
-
with open('frankenstein5k.md', 'r') as r:
|
94 |
-
return r.read().strip()
|
95 |
-
|
96 |
-
CHOICES = {
|
97 |
-
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
98 |
-
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
99 |
-
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
|
100 |
-
'🇺🇸 🚺 Aoede': 'af_aoede',
|
101 |
-
'🇺🇸 🚺 Kore': 'af_kore',
|
102 |
-
'🇺🇸 🚺 Sarah': 'af_sarah',
|
103 |
-
'🇺🇸 🚺 Nova': 'af_nova',
|
104 |
-
'🇺🇸 🚺 Sky': 'af_sky',
|
105 |
-
'🇺🇸 🚺 Alloy': 'af_alloy',
|
106 |
-
'🇺🇸 🚺 Jessica': 'af_jessica',
|
107 |
-
'🇺🇸 🚺 River': 'af_river',
|
108 |
-
'🇺🇸 🚹 Michael': 'am_michael',
|
109 |
-
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
110 |
-
'🇺🇸 🚹 Puck': 'am_puck',
|
111 |
-
'🇺🇸 🚹 Echo': 'am_echo',
|
112 |
-
'🇺🇸 🚹 Eric': 'am_eric',
|
113 |
-
'🇺🇸 🚹 Liam': 'am_liam',
|
114 |
-
'🇺🇸 🚹 Onyx': 'am_onyx',
|
115 |
-
'🇺🇸 🚹 Santa': 'am_santa',
|
116 |
-
'🇺🇸 🚹 Adam': 'am_adam',
|
117 |
-
'🇬🇧 🚺 Emma': 'bf_emma',
|
118 |
-
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
119 |
-
'🇬🇧 🚺 Alice': 'bf_alice',
|
120 |
-
'🇬🇧 🚺 Lily': 'bf_lily',
|
121 |
-
'🇬🇧 🚹 George': 'bm_george',
|
122 |
-
'🇬🇧 🚹 Fable': 'bm_fable',
|
123 |
-
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
124 |
-
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
125 |
-
}
|
126 |
-
for v in CHOICES.values():
|
127 |
-
pipelines[v[0]].load_voice(v)
|
128 |
-
|
129 |
-
TOKEN_NOTE = '''
|
130 |
-
💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)`
|
131 |
-
|
132 |
-
💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ`
|
133 |
-
|
134 |
-
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`
|
135 |
-
|
136 |
-
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
|
137 |
-
'''
|
138 |
-
|
139 |
-
with gr.Blocks() as generate_tab:
|
140 |
-
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
141 |
-
generate_btn = gr.Button('Generate', variant='primary')
|
142 |
-
with gr.Accordion('Output Tokens', open=True):
|
143 |
-
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
144 |
-
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
145 |
-
gr.Markdown(TOKEN_NOTE)
|
146 |
-
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
147 |
-
|
148 |
-
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
149 |
-
if CHAR_LIMIT is not None:
|
150 |
-
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
|
151 |
-
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
152 |
-
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
153 |
-
|
154 |
-
with gr.Blocks() as stream_tab:
|
155 |
-
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
156 |
-
with gr.Row():
|
157 |
-
stream_btn = gr.Button('Stream', variant='primary')
|
158 |
-
stop_btn = gr.Button('Stop', variant='stop')
|
159 |
-
with gr.Accordion('Note', open=True):
|
160 |
-
gr.Markdown(STREAM_NOTE)
|
161 |
-
gr.DuplicateButton()
|
162 |
-
|
163 |
-
BANNER_TEXT = '''
|
164 |
-
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
165 |
-
|
166 |
-
This demo only showcases English, but you can directly use the model to access other languages.
|
167 |
-
'''
|
168 |
-
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
169 |
-
API_NAME = None if API_OPEN else False
|
170 |
-
with gr.Blocks() as app:
|
171 |
-
with gr.Row():
|
172 |
-
gr.Markdown(BANNER_TEXT, container=True)
|
173 |
-
with gr.Row():
|
174 |
-
with gr.Column():
|
175 |
-
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
176 |
-
with gr.Row():
|
177 |
-
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
178 |
-
use_gpu = gr.Dropdown(
|
179 |
-
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
180 |
-
value=CUDA_AVAILABLE,
|
181 |
-
label='Hardware',
|
182 |
-
info='GPU is usually faster, but has a usage quota',
|
183 |
-
interactive=CUDA_AVAILABLE
|
184 |
-
)
|
185 |
-
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
186 |
-
random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary')
|
187 |
-
with gr.Row():
|
188 |
-
gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary')
|
189 |
-
frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary')
|
190 |
-
with gr.Column():
|
191 |
-
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
192 |
-
random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME)
|
193 |
-
gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME)
|
194 |
-
frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME)
|
195 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
196 |
-
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
197 |
-
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
|
198 |
-
stop_btn.click(fn=None, cancels=stream_event)
|
199 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
200 |
-
|
201 |
-
if __name__ == '__main__':
|
202 |
-
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|