File size: 10,616 Bytes
57eccf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# helper_utilities.py

import os
from PIL import Image, ImageDraw, ImageFont, ImageColor
import requests
from io import BytesIO
import textwrap
import cv2
import numpy as np
from dotenv import load_dotenv

# Import configuration values from configuration.py
from utils.configuration import (
    fonts,  # Now this should correctly import fonts
    default_guidance_scale, 
    default_control_mode, 
    default_num_inference_steps, 
    default_seed, 
    default_controlnet_conditioning_scale,
    flux_model_url_template,
    control_net_url,
    get_headers,
    get_control_net_headers,
    valid_aspect_ratios
)

# ----------------------------------------------
# Environment Handling
# ----------------------------------------------

def load_env(dotenv_path):
    """Loads environment variables from a .env file."""
    load_dotenv(dotenv_path, override=True)

# ----------------------------------------------
# General Utilities
# ----------------------------------------------

def get_font(font_path, font_size):
    """Tries to load a specified font. Falls back to default if not found."""
    try:
        font = ImageFont.truetype(font_path, font_size)
    except IOError:
        font = ImageFont.load_default()
    return font

def send_post_request(url, headers, data, files=None):
    """A general function to send POST requests and handle responses."""
    if files:
        response = requests.post(url, headers=headers, files=files, data=data)
    else:
        response = requests.post(url, headers=headers, json=data)

    if response.status_code == 200:
        return response
    else:
        raise RuntimeError(f"Request failed with status code: {response.status_code}, Response: {response.text}")

def resize_image(image, size):
    """Resizes the image to the specified size."""
    return image.resize(size)

def combine_images(image1, image2):
    """Combines two images side by side."""
    combined = Image.new("RGB", (image1.width + image2.width, max(image1.height, image2.height)))
    combined.paste(image1, (0, 0))
    combined.paste(image2, (image1.width, 0))
    return combined

# ----------------------------------------------
# FLUX API and ControlNet Functions
# ----------------------------------------------

def generate_flux_image(model_path, api_key, prompt, steps=default_num_inference_steps, 
                        aspect_ratio="16:9", guidance_scale=default_guidance_scale, 
                        seed=default_seed, deployment=None):
    """
    Generates an image using the FLUX model based on the provided parameters.
    
    :param model_path: Path to the FLUX model
    :param api_key: API key for authentication
    :param prompt: Text prompt to generate the image
    :param steps: Number of inference steps for the model
    :param aspect_ratio: Desired aspect ratio for the output image
    :param guidance_scale: How strictly the model should follow the prompt
    :param seed: Seed value for randomization (for reproducibility)
    :param deployment: Optional deployment string for specific model deployments
    :return: Generated image as a PIL image
    """
    # Build the request URL
    base_url = flux_model_url_template.format(model_path=model_path)
    
    # If a specific deployment is provided, add it to the URL as a query parameter
    if deployment:
        url = f"{base_url}?deployment={deployment}"
    else:
        url = base_url

    headers = get_headers(api_key)

     # Data payload for the request
    data = {
        "prompt": prompt,
        "aspect_ratio": aspect_ratio,
        "guidance_scale": guidance_scale,
        "num_inference_steps": steps,
        "seed": seed
    }
    
    # Send the POST request and handle the response
    response = requests.post(url, headers=headers, json=data)
    
    if response.status_code == 200:
        # If the response is successful, convert the response content into an image
        img = Image.open(BytesIO(response.content))
        return img
    else:
        # Raise an error if the request fails
        raise RuntimeError(f"Failed to generate image: {response.status_code}, {response.text}")

def call_control_net_api(control_image, prompt, api_key, 
                         control_mode=0, 
                         guidance_scale=default_guidance_scale, 
                         num_inference_steps=default_num_inference_steps, 
                         seed=default_seed, 
                         controlnet_conditioning_scale=default_controlnet_conditioning_scale):
    """
    Calls the ControlNet API, sending a control image and prompt.
    Generates a new image based on ControlNet, processes the control image, 
    and handles aspect ratios.
    """
    # Process control image for ControlNet
    processed_image_bytes, processed_image = process_image(control_image)
    files = {'control_image': ('control_image.jpg', processed_image_bytes, 'image/jpeg')}
    
    # Calculate aspect ratio based on control image dimensions
    width, height = control_image.size
    aspect_ratio = f"{width}:{height}"
    
    data = {
        'prompt': prompt,
        'control_mode': control_mode,
        'aspect_ratio': aspect_ratio,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'seed': seed,
        'controlnet_conditioning_scale': controlnet_conditioning_scale
    }
    
    url = control_net_url
    headers = get_control_net_headers(api_key)

    # Send the POST request to ControlNet API
    response = send_post_request(url, headers, data, files)
    
    # Convert the response to an image
    generated_image = Image.open(BytesIO(response.content))
    return generated_image, processed_image

# ----------------------------------------------
# Image Manipulation Utilities
# ----------------------------------------------

def overlay_text_on_image(image, text, font_path, font_size, position):
    """Draws text on the image at the specified position."""
    draw = ImageDraw.Draw(image)
    font = get_font(font_path, font_size)
    draw.text(position, text, font=font, fill="black")
    return image

def get_closest_aspect_ratio(width, height):
    """
    Finds the closest valid aspect ratio for the given image dimensions.
    Uses the valid_aspect_ratios from configuration.py.
    """
    aspect_ratio = width / height
    closest_ratio = min(valid_aspect_ratios.keys(), key=lambda x: abs((x[0] / x[1]) - aspect_ratio))
    return valid_aspect_ratios[closest_ratio]


def get_next_largest_aspect_ratio(width, height):
    """
    Finds the next largest valid aspect ratio for the given image dimensions.
    Returns the aspect ratio as a tuple, formatted as (width, height).
    """
    aspect_ratio = width / height
    larger_ratios = [(x[0] / x[1], x) for x in valid_aspect_ratios.keys() if (x[0] / x[1]) >= aspect_ratio]
    
    if larger_ratios:
        # Return the smallest of the larger valid aspect ratios
        next_largest_ratio = min(larger_ratios, key=lambda x: x[0])
        return next_largest_ratio[1]  # Return the tuple (width, height)
    else:
        # If no larger aspect ratio is found, fall back to the closest
        closest_ratio = min(valid_aspect_ratios.keys(), key=lambda x: abs((x[0] / x[1]) - aspect_ratio))
        return closest_ratio



def process_image(image):
    """
    Processes an image by converting it to grayscale and detecting edges.
    Returns the edge-detected image.
    """
    gray_image = image.convert('L')
    np_image = np.array(gray_image)
    edges = cv2.Canny(np_image, 100, 200)
    edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
    return Image.fromarray(edges_rgb)

def draw_crop_preview(image, x, y, width, height):
    """Draws a red rectangle on the image to preview a crop region."""
    draw = ImageDraw.Draw(image)
    draw.rectangle([x, y, x + width, y + height], outline="red", width=2)
    return image

def wrap_text(text, max_chars):
    """Wraps text to a specified number of characters per line."""
    return "\n".join(textwrap.fill(line, width=max_chars) for line in text.split("\n"))

# ----------------------------------------------
# Text and Image Combination Utilities
# ----------------------------------------------

def add_custom_message(image, message, font_path, font_size, position_vertical, position_horizontal, max_chars, bg_color, font_color, alpha):
    """
    Adds a custom message to the image with specified font, positioning, and background color.
    Supports text wrapping and transparent background behind the text.
    """
    # Load font
    try:
        font = ImageFont.truetype(font_path, font_size)
    except IOError:
        font = ImageFont.load_default()

    # Convert image to RGBA if it's not already
    if image.mode != "RGBA":
        image = image.convert("RGBA")

    # Create an overlay for the text
    overlay = Image.new("RGBA", image.size, (255, 255, 255, 0))  # Fully transparent
    draw = ImageDraw.Draw(overlay)

    # Wrap the message text
    message = wrap_text(message, max_chars)

    img_width, img_height = image.size
    text_lines = message.split("\n")
    line_height = draw.textbbox((0, 0), "A", font=font)[3]  # Calculate height of a line of text
    total_text_height = line_height * len(text_lines)
    text_width = max([draw.textbbox((0, 0), line, font=font)[2] for line in text_lines])

    # Horizontal positioning
    if position_horizontal == "Left":
        x_pos = 10  # Padding from the left
    elif position_horizontal == "Center":
        x_pos = (img_width - text_width) // 2
    else:  # "Right"
        x_pos = img_width - text_width - 10  # Padding from the right

    # Vertical positioning
    if position_vertical == "Top":
        y_pos = 10  # Padding from the top
    elif position_vertical == "Center":
        y_pos = (img_height - total_text_height) // 2
    else:  # "Bottom"
        y_pos = img_height - total_text_height - 10  # Padding from the bottom

    # Draw the semi-transparent background rectangle behind the text
    padding = 10
    bg_color_rgba = (*ImageColor.getrgb(bg_color), alpha)  # Apply transparency
    draw.rectangle([x_pos - padding, y_pos - padding, x_pos + text_width + padding, y_pos + total_text_height + padding], fill=bg_color_rgba)

    # Draw the text line by line
    for i, line in enumerate(text_lines):
        draw.text((x_pos, y_pos + i * line_height), line, font=font, fill=font_color)

    # Composite the overlay with the original image
    combined = Image.alpha_composite(image, overlay)

    return combined.convert("RGB")  # Convert back to RGB for saving/display