Spaces:
Sleeping
Sleeping
File size: 8,742 Bytes
bf5fb5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
@startuml
!theme plain
skinparam classAttributeIconSize 0
skinparam defaultFontName Arial
skinparam class {
BackgroundColor PaleTurquoise
BorderColor DarkSlateGray
}
skinparam abstractClass {
BackgroundColor LightYellow
BorderColor DarkSlateGray
}
skinparam interface {
BackgroundColor White
BorderColor Black
}
' ----------- Type ParamGrid -----------
class ParamGrid {
note as N1
Exemples de clés et valeurs :
- "C": [0.1, 1, 10, 100]
- "kernel": ["linear", "rbf"]
- "gamma":
low: 0.001
high: 0.1
log: true
Ce type sert à décrire la structure attendue pour le param_grid
dans les Optimizers.
end note
}
' ----------- Interfaces -----------
package "Interfaces" {
interface MetricsCalculator {
+ calculate_and_log(y_true: cp.ndarray, y_pred: cp.ndarray, prefix: str): dict
+ calculate_and_log_multiclass(y_true: cp.ndarray, y_pred: cp.ndarray, prefix: str): dict
--
note bottom
Génère toujours : accuracy, f1, precision, recall, auc-roc
end note
}
interface Vectorizer {
+ fit_transform(texts: cudf.Series): cp.ndarray | csr_matrix
+ transform(texts: cudf.Series): cp.ndarray | csr_matrix
}
interface HyperparameterOptimizer {
+ optimize(trainer: BaseTrainer, param_grid: ParamGrid): dict
--
note bottom
Renvoie un dict correspondant \nà la best config trouvée
ex: {"C": 1, "kernel": "linear", "gamma": 0.01}
end note
}
}
' ----------- Base Classes -----------
package "Base Classes" {
abstract class BaseTrainer {
- config: Config
- classifier: object
- metrics_calculator: MetricsCalculator
--
+ __init__(config: Config, data_path: str, target_column: str)
+ build_components(): void
+ train(): void
+ evaluate(): void
+ log_parameters_to_mlflow(): void
+ optimize_if_needed(): void
-
_prepare_input_for_fit(X: cp.ndarray | csr_matrix): cp.ndarray | csr_matrix
-
_prepare_input_for_predict(X: cp.ndarray | csr_matrix): cp.ndarray | csr_matrix
-
_get_binary_predictions(X: cp.ndarray): cp.ndarray
-
_get_positive_probabilities(X: cp.ndarray): cp.ndarray | None
-
_get_label_dtype(): cp.dtype
note right
log_parameters_to_mlflow():
appelle la fonction singledispatch
get_relevant_params_for_logging(self).
optimize_if_needed():
Vérifie dans self.config \nsi un optimizer est défini, \npuis appelle optimize() \nsur ce dernier si besoin.
end note
}
abstract class CuMLTrainer extends BaseTrainer {
- vectorizer: Vectorizer
- classifier: cuML.Base
--
+ build_components(): void
+ train(): void
+ evaluate(): void
-
_prepare_input_for_fit(X: cp.ndarray | csr_matrix): cp.ndarray
-
_prepare_input_for_predict(X: cp.ndarray | csr_matrix): cp.ndarray
}
}
' ----------- Concrete Trainers (cuML) -----------
package "Concrete Trainers (cuML)" {
class SvmTrainer extends CuMLTrainer {
- classifier: SVC
--
+ _build_classifier(): void
note bottom
SvmTrainer est affecté \npar les paramètres C, kernel, \net gamma (pour RBF).
end note
}
class RandomForestTrainer extends CuMLTrainer {
- classifier: RandomForestClassifier
--
+ _build_classifier(): void
}
class LogisticRegressionTrainer extends CuMLTrainer {
- classifier: LogisticRegression
--
+ _build_classifier(): void
}
class LinearRegressionTrainer extends CuMLTrainer {
- classifier: LinearRegression
--
+ _build_classifier(): void
}
}
' ----------- Concrete Trainers (Hugging Face) -----------
package "Concrete Trainers (Hugging Face)" {
class HuggingFaceTransformerTrainer extends BaseTrainer {
- tokenizer: AutoTokenizer
- model: AutoModelForSequenceClassification
- hf_trainer: Trainer
--
+ build_components(): void
+ train(): void
+ evaluate(): void
-
_create_torch_dataset(texts: cudf.Series, labels: cp.ndarray): torch.utils.data.Dataset
-
_prepare_training_args(): TrainingArguments
note right
Ce trainer n'utilise pas
la config vectorizer
end note
}
}
' ----------- Hyperparameter Optimizers -----------
package "Hyperparameter Optimizers" {
class OptunaOptimizer {
- study: optuna.study.Study
- objective: function
--
+ optimize(trainer: BaseTrainer, param_grid: ParamGrid): dict
--
note bottom
Implementation:
1) Crée/récupère un study Optuna.
2) Définit l'objective (fonction de coût).
Ex: Utilise param_grid["C"] \npour suggérer \ntrial.suggest_float("C",...)
3) Applique les hyperparams au trainer \n(e.g. trainer.classifier = SVC(**params)).
4) study.optimize(..., n_trials=...)
5) Retourne la meilleure config sous forme d'un dict
end note
}
class RayTuneOptimizer {
- param_space: dict
- search_alg: object
- scheduler: object
--
+ optimize(trainer: BaseTrainer, param_grid: ParamGrid): dict
--
note bottom
Implementation:
1) Convertit param_grid \nen param_space pour Ray Tune.
(ex: "C": tune.grid_search([...]))
2) Lance tune.run(...).
3) Utilise search_alg/scheduler.
4) Retourne la meilleure config \nsous forme d'un dict
end note
}
OptunaOptimizer ..> HyperparameterOptimizer : «implements»
RayTuneOptimizer ..> HyperparameterOptimizer : «implements»
}
' ----------- MLflow Integration -----------
package "MLflow Integration" {
class MLflowDecorator {
- experiment_name: str
- tracking_uri: str
--
+ __init__(experiment_name: str, tracking_uri: str): void
+ __call__(func: function): function
+ _start_run(): void
+ _log_params(params: dict): void
+ _log_metrics(metrics: dict): void
+ _log_artifacts(artifacts: dict): void
+ _end_run(status: str): void
}
}
' ----------- Utilities -----------
package "Utilities" {
class CuMLPyFuncWrapper {
- vectorizer: Vectorizer
- classifier: object
--
+ load_context(context): void
+ predict(context, model_input: pd.DataFrame): np.ndarray
}
}
' ----------- Configuration -----------
package "Configuration" {
class Config <<PydanticModel>> {
+ model: ModelConfig
+ vectorization: VectorizationConfig
+ data: DataConfig
+ hyperparameters: HyperparameterConfig
}
class ModelConfig <<PydanticModel>> {
+ type: str
+ params: dict
}
class VectorizationConfig <<PydanticModel>> {
+ method: str
+ tfidf: dict
+ bow: dict
}
class DataConfig <<PydanticModel>> {
+ path: str
+ target_column: str
}
class HyperparameterConfig <<PydanticModel>> {
+ optimizer: str
+ param_grid: dict
+ n_trials: int
--
note bottom
Exemple de param_grid pour SVM:
\{
"C": [0.1, 1, 10, 100],
"kernel": ["linear", "rbf"],
"gamma": \{
"low": 0.001,
"high": 0.1,
"log": true
\}
\}
n_trials: 50
end note
}
Config <|-- ModelConfig
Config <|-- VectorizationConfig
Config <|-- DataConfig
Config <|-- HyperparameterConfig
note left of Config
Extrait YAML:
hyperparameters:
optimizer: "optuna"
param_grid:
C: [0.1, 1, 10, 100]
kernel:
- "linear"
- "rbf"
gamma:
low: 0.001
high: 0.1
log: true
n_trials: 50
=
Hydra -> DictConfig -> Config(Pydantic)
end note
}
' ----------- singledispatch function -----------
package "Parameter Logging (singledispatch)" {
object get_relevant_params_for_logging <<Function>>
note bottom
@singledispatch
def get_relevant_params_for_logging(trainer: BaseTrainer) -> dict:
...
@get_relevant_params_for_logging.register
def _(trainer: HuggingFaceTransformerTrainer) -> dict:
...
@get_relevant_params_for_logging.register
def _(trainer: SvmTrainer) -> dict:
...
etc.
end note
}
' ----------- Relations -----------
BaseTrainer ..> MetricsCalculator : «uses»
BaseTrainer ..> HyperparameterOptimizer : «may use»
BaseTrainer ..> MLflowDecorator : «may be decorated by»
BaseTrainer ..> get_relevant_params_for_logging : «calls singledispatch function»
CuMLTrainer ..> cuML.Base : «uses»
CuMLTrainer ..> CuMLPyFuncWrapper : «for saving model»
HuggingFaceTransformerTrainer ..> AutoTokenizer : «uses»
HuggingFaceTransformerTrainer ..> AutoModelForSequenceClassification : «uses»
HuggingFaceTransformerTrainer ..> Trainer : «uses»
HuggingFaceTransformerTrainer ..> TrainingArguments : «uses»
MLflowDecorator ..> mlflow : «uses»
@enduml |