Pierre Chapuis commited on
Commit
26a3750
·
unverified ·
1 Parent(s): ddd2c9f

use enhancer generator

Browse files

https://huggingface.co/spaces/finegrain/finegrain-image-enhancer/discussions/6

Files changed (2) hide show
  1. requirements.lock +1 -1
  2. src/app.py +4 -3
requirements.lock CHANGED
@@ -117,7 +117,7 @@ nvidia-nvjitlink-cu12==12.6.85
117
  # via torch
118
  nvidia-nvtx-cu12==12.6.77
119
  # via torch
120
- orjson==3.10.16
121
  # via gradio
122
  packaging==25.0
123
  # via gradio
 
117
  # via torch
118
  nvidia-nvtx-cu12==12.6.77
119
  # via torch
120
+ orjson==3.10.17
121
  # via gradio
122
  packaging==25.0
123
  # via gradio
src/app.py CHANGED
@@ -6,7 +6,6 @@ import spaces
6
  import torch
7
  from huggingface_hub import hf_hub_download
8
  from PIL import Image
9
- from refiners.fluxion.utils import manual_seed
10
  from refiners.foundationals.latent_diffusion import Solver, solvers
11
 
12
  from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
@@ -114,10 +113,11 @@ def process(
114
  num_inference_steps: int = 18,
115
  solver: str = "DDIM",
116
  ) -> tuple[Image.Image, Image.Image]:
117
- manual_seed(seed)
118
-
119
  solver_type: type[Solver] = getattr(solvers, solver)
120
 
 
 
 
121
  enhanced_image = enhancer.upscale(
122
  image=input_image,
123
  prompt=prompt,
@@ -131,6 +131,7 @@ def process(
131
  num_inference_steps=num_inference_steps,
132
  loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
133
  solver_type=solver_type,
 
134
  )
135
 
136
  return (input_image, enhanced_image)
 
6
  import torch
7
  from huggingface_hub import hf_hub_download
8
  from PIL import Image
 
9
  from refiners.foundationals.latent_diffusion import Solver, solvers
10
 
11
  from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
 
113
  num_inference_steps: int = 18,
114
  solver: str = "DDIM",
115
  ) -> tuple[Image.Image, Image.Image]:
 
 
116
  solver_type: type[Solver] = getattr(solvers, solver)
117
 
118
+ generator = torch.Generator(device=DEVICE)
119
+ generator.manual_seed(seed)
120
+
121
  enhanced_image = enhancer.upscale(
122
  image=input_image,
123
  prompt=prompt,
 
131
  num_inference_steps=num_inference_steps,
132
  loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
133
  solver_type=solver_type,
134
+ generator=generator,
135
  )
136
 
137
  return (input_image, enhanced_image)