File size: 14,697 Bytes
c119a86
 
 
 
 
 
0928404
 
c119a86
 
 
0928404
c119a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e604193
c119a86
 
 
 
 
 
 
dede6e9
c119a86
 
 
 
 
 
 
 
 
 
 
 
0928404
 
 
c119a86
0928404
e604193
0928404
c119a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0928404
c119a86
 
 
 
0928404
 
c119a86
 
 
 
 
0928404
c119a86
0928404
c119a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0928404
 
c119a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7381ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec33e2a
c119a86
 
0928404
 
 
 
 
 
c119a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0928404
 
c119a86
0928404
c119a86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import json
import datetime
import requests
from email.utils import parseaddr

import gradio as gr
import pandas as pd
import numpy as np

from datasets import load_dataset, VerificationMode
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi

# InfoStrings
from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink

TOKEN = os.environ.get("TOKEN", None)

OWNER="financebench"
DATA_DATASET = f"{OWNER}/finance-events-latest"
INTERNAL_DATA_DATASET = f"{OWNER}/finance-events-latest"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()

YEAR_VERSION = ""
ref_scores_len = {"valid": 165, "test": 301}
ref_level_len = {"valid": {1: 53, 2: 86, 3: 26}, "test": {1: 93, 2: 159, 3: 49}}

os.makedirs("scored", exist_ok=True)

# Should be False on spaces and True outside
LOCAL_DEBUG = False #not (os.environ.get("system") == "spaces")

# Display the results
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
def get_dataframe_from_results(eval_results, split):
    local_df = eval_results[split]
    local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
    local_df = local_df.remove_columns(["system_prompt", "url", "organisation", "username"])
    local_df = local_df.rename_column("model", "Agent name")
    local_df = local_df.rename_column("model_family", "Model family")
    local_df = local_df.rename_column("score", "Return (%)")
    local_df = local_df.rename_column("date", "Submission date")
    df = pd.DataFrame(local_df)
    df = df.sort_values(by=["Return (%)"], ascending=False)

    numeric_cols = [c for c in local_df.column_names if "return" in c.lower()]
    df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
    #df = df.style.format("{:.2%}", subset=numeric_cols)

    return df

eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="valid")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")

# Gold answers
gold_results = {}
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, "", token=TOKEN, trust_remote_code=True)
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "valid"]}


def restart_space():
    api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)

TYPES = ["markdown", "str", "number", "str"]

def add_new_eval(
    val_or_test: str,
    model: str,
    model_family: str,
    system_prompt: str,
    url: str,
    path_to_file: str,
    organisation: str,
    mail: str,
    profile: gr.OAuthProfile, 
):
    # Was the profile created less than 2 month ago?
    user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
    creation_date = json.loads(user_data.content)["createdAt"]
    if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
        return format_error("This account is not authorized to submit on FinanceBench.")
        

    contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
    user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
    if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
        return format_error("You already submitted once today, please try again tomorrow.")


    is_valid = val_or_test == "valid"
    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        return format_warning("Please provide a valid email adress.")

    print("Adding new eval")

    # Check if the combination model/org already exists and prints a warning message if yes
    if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]):
        return format_warning("This model has been already submitted.")
    
    if path_to_file is None:
        return format_warning("Please attach a file.")

    # SAVE UNSCORED SUBMISSION
    if LOCAL_DEBUG:
        print("mock uploaded submission")
    else:
        api.upload_file(
            repo_id=SUBMISSION_DATASET, 
            path_or_fileobj=path_to_file.name, 
            path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
            repo_type="dataset", 
            token=TOKEN
        )

    # SAVE CONTACT
    contact_info = {
        "model": model,
        "model_family": model_family,
        "url": url,
        "organisation": organisation,
        "username": profile.username,
        "mail": mail,
        "date": datetime.datetime.today().strftime('%Y-%m-%d')
    }
    contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
    if LOCAL_DEBUG:
        print("mock uploaded contact info")
    else:
        contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)

    # SCORE SUBMISSION
    file_path = path_to_file.name        
    scores = {"all": 0, 1: 0, 2: 0, 3: 0}
    num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
    task_ids = []
    with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
        with open(file_path, 'r') as f:
            for ix, line in enumerate(f):
                try:
                    task = json.loads(line)
                except Exception:
                    return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")

                if "model_answer" not in task:
                    return format_error(f"Line {ix} contains no model_answer key. Please fix it and resubmit your file.")
                answer = task["model_answer"]
                task_id = task["task_id"]
                try:
                    level = int(gold_results[val_or_test][task_id]["Level"])
                except KeyError:
                    return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?")

                score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
                
                scored_file.write(
                    json.dumps({
                        "id": task_id,
                        "model_answer": answer,
                        "score": score,
                        "level": level
                    }) + "\n"
                )
                task_ids.append(task_id)

                scores["all"] += score
                scores[level] += score
                num_questions["all"] += 1
                num_questions[level] += 1

    # Check if there's any duplicate in the submission
    if len(task_ids) != len(set(task_ids)):
        return format_error("There are duplicates in your submission. Please check your file and resubmit it.")

    if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
        return format_error(f"Your submission has {num_questions[1]} questions for level 1, {num_questions[2]} for level 2, and {num_questions[3]} for level 3, but it should have {ref_level_len[val_or_test][1]}, {ref_level_len[val_or_test][2]}, and {ref_level_len[val_or_test][3]} respectively. Please check your submission.")

    # SAVE SCORED SUBMISSION
    if LOCAL_DEBUG:
        print("mock uploaded scored submission")
    else:
        api.upload_file(
            repo_id=SUBMISSION_DATASET, 
            path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
            path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl", 
            repo_type="dataset", 
            token=TOKEN
        )

        # Save scored file
        if is_valid:
            api.upload_file(
                repo_id=SUBMISSION_DATASET_PUBLIC, 
                path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
                path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl", 
                repo_type="dataset", 
                token=TOKEN
            )

    # SAVE TO LEADERBOARD DATA
    eval_entry = {
        "model": model,
        "model_family": model_family,
        "system_prompt": system_prompt,
        "url": url,
        "organisation": organisation,
        "score": scores["all"]/ref_scores_len[val_or_test],
        "date": datetime.datetime.today().strftime('%Y-%m-%d')
    }
    if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
        return format_error(f"Your submission has {len(scores['all'])} questions for the {val_or_test} set, but it should have {ref_scores_len[val_or_test]}. Please check your submission.")
    # Catching spam submissions of 100%

    # Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions
    #eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"}
    #columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"]
    #if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date):
    #    return format_error(f"Your submission is an exact duplicate from an existing submission.")

    eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
    print(eval_results)
    if LOCAL_DEBUG:
        print("mock uploaded results to lb")
    else:
        eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN)


    return format_log(f"Model {model} submitted by {organisation} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")


def refresh():
    eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS,trust_remote_code=True)
    eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="valid")
    eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
    return eval_dataframe_val, eval_dataframe_test

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


demo = gr.Blocks()
with demo:
    with gr.Row():
        gr.HTML("""
        <div style="display: flex; justify-content: flex-start; align-items: center; padding: 15px 0; border-bottom: 1px solid 
#eaeaea; width: 100%;">
            <div>
                <a href="https://financebench.ai/hello-world/" target="_self" style="text-decoration: none; color: inherit; font-weight: bold; font-size: 24px; margin-right: 40px;">
                    FinanceBench.ai
                </a>
            </div>
            <div style="display: flex; gap: 25px;">
                <a href="https://financebench.ai/hello-world/" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">HOME</a>
                <a href="https://huggingface.co/spaces/financebench/leaderboard" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">LEADERBOARD</a>
                <a href="https://financebench.ai/get-started/" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">GET STARTED</a>
            </div>
        </div>
        """)
    #gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ) #.style(show_copy_button=True)

    with gr.Tab("Results: Test"):
        leaderboard_table_test = gr.components.Dataframe(
            value=eval_dataframe_test, datatype=TYPES, interactive=False,
            column_widths=["20%"] 
        )
    with gr.Tab("Results: valid"):
        leaderboard_table_val = gr.components.Dataframe(
            value=eval_dataframe_val, datatype=TYPES, interactive=False,
            column_widths=["20%"] 
        )

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[
            leaderboard_table_val,
            leaderboard_table_test,
        ],
    )
    with gr.Accordion("Submit a new model for evaluation"):
        with gr.Row():
            gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
        with gr.Row():
            with gr.Column():
                level_of_test = gr.Radio(["valid", "test"], value="valid", label="Split")
                model_name_textbox = gr.Textbox(label="Agent name")
                model_family_textbox = gr.Textbox(label="Model family")
                system_prompt_textbox = gr.Textbox(label="System prompt example")
                url_textbox = gr.Textbox(label="Url to model information")
            with gr.Column():
                organisation = gr.Textbox(label="Organisation")
                mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
                file_output = gr.File()


        with gr.Row():
            gr.LoginButton()
            submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                level_of_test,
                model_name_textbox,
                model_family_textbox,
                system_prompt_textbox,
                url_textbox,
                file_output,
                organisation,
                mail
            ],
            submission_result,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)