Spaces:
Running
Running
File size: 14,697 Bytes
c119a86 0928404 c119a86 0928404 c119a86 e604193 c119a86 dede6e9 c119a86 0928404 c119a86 0928404 e604193 0928404 c119a86 0928404 c119a86 0928404 c119a86 0928404 c119a86 0928404 c119a86 0928404 c119a86 7381ebe ec33e2a c119a86 0928404 c119a86 0928404 c119a86 0928404 c119a86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import json
import datetime
import requests
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset, VerificationMode
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
TOKEN = os.environ.get("TOKEN", None)
OWNER="financebench"
DATA_DATASET = f"{OWNER}/finance-events-latest"
INTERNAL_DATA_DATASET = f"{OWNER}/finance-events-latest"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = ""
ref_scores_len = {"valid": 165, "test": 301}
ref_level_len = {"valid": {1: 53, 2: 86, 3: 26}, "test": {1: 93, 2: 159, 3: 49}}
os.makedirs("scored", exist_ok=True)
# Should be False on spaces and True outside
LOCAL_DEBUG = False #not (os.environ.get("system") == "spaces")
# Display the results
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
local_df = local_df.remove_columns(["system_prompt", "url", "organisation", "username"])
local_df = local_df.rename_column("model", "Agent name")
local_df = local_df.rename_column("model_family", "Model family")
local_df = local_df.rename_column("score", "Return (%)")
local_df = local_df.rename_column("date", "Submission date")
df = pd.DataFrame(local_df)
df = df.sort_values(by=["Return (%)"], ascending=False)
numeric_cols = [c for c in local_df.column_names if "return" in c.lower()]
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
#df = df.style.format("{:.2%}", subset=numeric_cols)
return df
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="valid")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
# Gold answers
gold_results = {}
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, "", token=TOKEN, trust_remote_code=True)
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "valid"]}
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "str", "number", "str"]
def add_new_eval(
val_or_test: str,
model: str,
model_family: str,
system_prompt: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
profile: gr.OAuthProfile,
):
# Was the profile created less than 2 month ago?
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
creation_date = json.loads(user_data.content)["createdAt"]
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
return format_error("This account is not authorized to submit on FinanceBench.")
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
return format_error("You already submitted once today, please try again tomorrow.")
is_valid = val_or_test == "valid"
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# SAVE UNSCORED SUBMISSION
if LOCAL_DEBUG:
print("mock uploaded submission")
else:
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# SAVE CONTACT
contact_info = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"username": profile.username,
"mail": mail,
"date": datetime.datetime.today().strftime('%Y-%m-%d')
}
contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
if LOCAL_DEBUG:
print("mock uploaded contact info")
else:
contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)
# SCORE SUBMISSION
file_path = path_to_file.name
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
task_ids = []
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
for ix, line in enumerate(f):
try:
task = json.loads(line)
except Exception:
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
if "model_answer" not in task:
return format_error(f"Line {ix} contains no model_answer key. Please fix it and resubmit your file.")
answer = task["model_answer"]
task_id = task["task_id"]
try:
level = int(gold_results[val_or_test][task_id]["Level"])
except KeyError:
return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?")
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
scored_file.write(
json.dumps({
"id": task_id,
"model_answer": answer,
"score": score,
"level": level
}) + "\n"
)
task_ids.append(task_id)
scores["all"] += score
scores[level] += score
num_questions["all"] += 1
num_questions[level] += 1
# Check if there's any duplicate in the submission
if len(task_ids) != len(set(task_ids)):
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
return format_error(f"Your submission has {num_questions[1]} questions for level 1, {num_questions[2]} for level 2, and {num_questions[3]} for level 3, but it should have {ref_level_len[val_or_test][1]}, {ref_level_len[val_or_test][2]}, and {ref_level_len[val_or_test][3]} respectively. Please check your submission.")
# SAVE SCORED SUBMISSION
if LOCAL_DEBUG:
print("mock uploaded scored submission")
else:
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# Save scored file
if is_valid:
api.upload_file(
repo_id=SUBMISSION_DATASET_PUBLIC,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# SAVE TO LEADERBOARD DATA
eval_entry = {
"model": model,
"model_family": model_family,
"system_prompt": system_prompt,
"url": url,
"organisation": organisation,
"score": scores["all"]/ref_scores_len[val_or_test],
"date": datetime.datetime.today().strftime('%Y-%m-%d')
}
if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
return format_error(f"Your submission has {len(scores['all'])} questions for the {val_or_test} set, but it should have {ref_scores_len[val_or_test]}. Please check your submission.")
# Catching spam submissions of 100%
# Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions
#eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"}
#columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"]
#if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date):
# return format_error(f"Your submission is an exact duplicate from an existing submission.")
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
print(eval_results)
if LOCAL_DEBUG:
print("mock uploaded results to lb")
else:
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN)
return format_log(f"Model {model} submitted by {organisation} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
def refresh():
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS,trust_remote_code=True)
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="valid")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
return eval_dataframe_val, eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
with gr.Row():
gr.HTML("""
<div style="display: flex; justify-content: flex-start; align-items: center; padding: 15px 0; border-bottom: 1px solid
#eaeaea; width: 100%;">
<div>
<a href="https://financebench.ai/hello-world/" target="_self" style="text-decoration: none; color: inherit; font-weight: bold; font-size: 24px; margin-right: 40px;">
FinanceBench.ai
</a>
</div>
<div style="display: flex; gap: 25px;">
<a href="https://financebench.ai/hello-world/" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">HOME</a>
<a href="https://huggingface.co/spaces/financebench/leaderboard" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">LEADERBOARD</a>
<a href="https://financebench.ai/get-started/" target="_self" style="text-decoration: none; color: inherit; font-weight: 500;">GET STARTED</a>
</div>
</div>
""")
#gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
) #.style(show_copy_button=True)
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
with gr.Tab("Results: valid"):
leaderboard_table_val = gr.components.Dataframe(
value=eval_dataframe_val, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["valid", "test"], value="valid", label="Split")
model_name_textbox = gr.Textbox(label="Agent name")
model_family_textbox = gr.Textbox(label="Model family")
system_prompt_textbox = gr.Textbox(label="System prompt example")
url_textbox = gr.Textbox(label="Url to model information")
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
file_output = gr.File()
with gr.Row():
gr.LoginButton()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
model_family_textbox,
system_prompt_textbox,
url_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)
|