#%% import os import re #%% import torch import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, BitsAndBytesConfig from textgames import GAME_NAMES, LEVEL_IDS from agents import run_with_agent #%% def set_all_seed(seed=42): set_seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) #%% def _getenv_as_int(attr, default=None): ret = os.getenv(attr, default) return None if ret is None else int(ret) GAME_ST, GAME_ED = _getenv_as_int("TG_GAME_ST", None), _getenv_as_int("TG_GAME_ED", None) LVL_ST, LVL_ED = _getenv_as_int("TG_LEVEL_ST", None), _getenv_as_int("TG_LEVEL_ED", '3') SID_ST, SID_ED = _getenv_as_int("TG_SID_ST", None), _getenv_as_int("TG_SID_ED", None) N_TURNS = _getenv_as_int("TG_N_TURNS", 3) ONE_SHOT = bool(int(os.getenv("TG_ONESHOT", "0"))) # MAX_NEW_TOKENS = _getenv_as_int("TG_MAX_NEW_TOKENS", 4096) QWEN_MATH_SIZE = os.getenv("TG_QWEN_MATH_SIZE", "7") # {1.5, 7, 72} QUANTIZE = _getenv_as_int("TG_QUANTIZE", 4) #%% def qwenmath_postproc(response_txt_batch, *args, **kwargs): response_txt_batch = [response_txt_batch] ret = [] for response_txt in response_txt_batch: _match = None for pat in [ re.compile(r'\\boxed\{([\s\S]*)}'), re.compile(r'^```\n?([^`]*)\n?```'), # re.compile(r'\n([\s\S]*)$'), ]: matches = pat.search(response_txt) if matches: _match = matches.group(1).strip() break if _match is not None: ret.append(_match) else: ret.append(response_txt if response_txt else "") return ret[0] #%% def get_qwenmath_response(texts_batch, *args, **kwargs): # global model, tokenizer texts_batch = [texts_batch] for texts in texts_batch: if (len(texts) > 1) and texts[2].startswith('Correct guess.'): # assert len(texts) % 2 == 1 texts[1] = f"\\boxed{{{texts[1]}}}" messages = [ [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{} as plain text."}, *[{"role": ("user" if i % 2 == 0 else "assistant"), "content": text} for i, text in enumerate(texts)], ] for texts in texts_batch ] # print(f"\n{messages[0]}", end="\n=====\n\n") text_inputs = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer(text_inputs, return_tensors="pt", add_special_tokens=False).to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512, do_sample=False, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response.strip() #%% if __name__ == "__main__": fp_out = (f"model_outputs/__runs__/results_qwen2-5-math-{QWEN_MATH_SIZE}b-instruct_{QUANTIZE}bit" f"{'.1s' if ONE_SHOT else '.zs'}" f"{'' if GAME_ST is None else f'.{GAME_ST}'}" f"{'' if LVL_ST is None else f'.{LVL_ST}'}" f".jsonl") set_all_seed() if QWEN_MATH_SIZE in ['72'] and QUANTIZE < 16: _additional_kwargs = { "quantization_config": ( BitsAndBytesConfig(load_in_8bit=True) if QUANTIZE == 8 else BitsAndBytesConfig(load_in_4bit=True) ), "low_cpu_mem_usage": True, } else: _additional_kwargs = {"device_map": "auto"} model_name = f"Qwen/Qwen2.5-Math-{QWEN_MATH_SIZE}B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", **_additional_kwargs, ) print(f" > model.dtype: {model.dtype}") run_with_agent( fp_out, get_qwenmath_response, qwenmath_postproc, n_turns=N_TURNS, game_names_list=GAME_NAMES[GAME_ST:GAME_ED], level_ids_list=LEVEL_IDS[LVL_ST:LVL_ED], sid_indices=(list(map(lambda r: f"session_{r:04}", range(SID_ST or 0, SID_ED or 1000))) if SID_ST or SID_ED else None), prepend_example=ONE_SHOT, # remove_if_output_file_exist=False, assistant_uses_raw_response=True, )