File size: 12,557 Bytes
0305a63
 
 
 
 
 
 
f6c83c7
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7295c51
 
 
 
 
 
 
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845875d
0305a63
 
b0ad4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845875d
 
 
94b31be
845875d
 
 
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c76d36
9ae79a9
 
0305a63
 
 
9ae79a9
0305a63
f249153
 
0305a63
 
 
 
 
 
9ae79a9
 
 
 
 
 
 
 
 
 
 
 
 
0305a63
 
 
 
 
9db8ed0
0305a63
 
 
b0ad4c2
 
 
 
0305a63
 
 
 
 
 
 
 
 
 
a0b9f4c
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a76540
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

import torch
import numpy as np
import gradio as gr
import spaces
from PIL import Image

from diffusers import DDPMScheduler
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler

from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline

def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
               pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):

    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        # ratio = min_side / min(h, w)
        # w, h = round(ratio*w), round(ratio*h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image

from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".")
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".")

instantir_path = f'./models'

device = "cuda" if torch.cuda.is_available() else "cpu"
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
dinov2_repo_id = "facebook/dinov2-large"
lcm_repo_id = "latent-consistency/lcm-lora-sdxl"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Load pretrained models.
print("Initializing pipeline...")
pipe = InstantIRPipeline.from_pretrained(
    sdxl_repo_id,
    torch_dtype=torch_dtype,
)

# Image prompt projector.
print("Loading LQ-Adapter...")
load_adapter_to_pipe(
    pipe,
    f"{instantir_path}/adapter.pt",
    dinov2_repo_id,
)

# Prepare previewer
lora_alpha = pipe.prepare_previewers(instantir_path)
print(f"use lora alpha {lora_alpha}")
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
print(f"use lora alpha {lora_alpha}")
pipe.to(device=device, dtype=torch_dtype)
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)

# Load weights.
print("Loading checkpoint...")
aggregator_state_dict = torch.load(
    f"{instantir_path}/aggregator.pt",
    map_location="cpu"
)
pipe.aggregator.load_state_dict(aggregator_state_dict, strict=True)
pipe.aggregator.to(device=device, dtype=torch_dtype)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
ultra HD, extreme meticulous detailing, skin pore detailing, \
hyper sharpness, perfect without deformations, \
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "

NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
watermark, signature, jpeg artifacts, deformed, lowres"

def unpack_pipe_out(preview_row, index):
    return preview_row[index][0]

def dynamic_preview_slider(sampling_steps):
    print(sampling_steps)
    return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1)

def dynamic_guidance_slider(sampling_steps):
    return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1)

def show_final_preview(preview_row):
    return preview_row[-1][0]

@spaces.GPU(duration=70) #[uncomment to use ZeroGPU]
@torch.no_grad()
def instantir_restore(
    lq,  # A low-quality PIL image to be restored
    prompt="",  # Optional: A text prompt guiding creative restoration
    steps=30,  # Number of denoising steps (controls generation detail and time)
    cfg_scale=7.0,  # Classifier-Free Guidance scale; higher = more prompt adherence
    guidance_end=1.0,  # When to stop guidance and allow free generation (0.0 - 1.0 or 0 - steps)
    creative_restoration=False,  # Toggle creative mode (uses LCM adapter)
    seed=3407,  # Seed for reproducibility
    height=1024,  # Target height for output image
    width=1024,  # Target width for output image
    preview_start=0.0,  # When to start showing previews (fraction or step index)
    progress=gr.Progress(track_tqdm=True)  # Progress tracker for Gradio
):
    """
    Restore or creatively re-generate a low-quality image using the InstantIR pipeline.

    This function takes a degraded image and applies a guided diffusion model to restore it.
    Optionally, a text prompt can be provided to guide a creative re-interpretation of the image.

    Args:
        lq (PIL.Image): The input low-quality image to restore.
        prompt (str, optional): Text description to guide restoration or creative re-generation.
        steps (int): Number of inference steps; more steps generally yield better results.
        cfg_scale (float): Guidance scale for prompt adherence; higher means stronger influence.
        guidance_end (float or int): Defines when to stop using prompt guidance during diffusion.
        creative_restoration (bool): Whether to enable imaginative regeneration via LCM adapter.
        seed (int): Random seed for reproducible results.
        height (int): Output image height; used if input is square.
        width (int): Output image width; used if input is square.
        preview_start (float or int): Step or ratio when previewing starts.
        progress (gr.Progress): Progress tracker for UI feedback.

    Returns:
        Tuple[PIL.Image, List[List[Union[PIL.Image, str]]]]:
            - The final restored image.
            - A list of preview images from intermediate steps with labels.
    """
    
    if creative_restoration:
        if "lcm" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('lcm')
    else:
        if "previewer" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('previewer')

    if isinstance(guidance_end, int):
        guidance_end = guidance_end / steps
    elif guidance_end > 1.0:
        guidance_end = guidance_end / steps
    if isinstance(preview_start, int):
        preview_start = preview_start / steps
    elif preview_start > 1.0:
        preview_start = preview_start / steps

    w, h = lq.size
    if w == h :
        lq = [resize_img(lq.convert("RGB"), size=(width, height))]
    else:
        lq = [resize_img(lq.convert("RGB"), size=None)]
   
    generator = torch.Generator(device=device).manual_seed(seed)
    timesteps = [
        i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
    ]
    timesteps = timesteps[::-1]

    prompt = PROMPT if len(prompt)==0 else prompt
    neg_prompt = NEG_PROMPT

    out = pipe(
        prompt=[prompt]*len(lq),
        image=lq,
        num_inference_steps=steps,
        generator=generator,
        timesteps=timesteps,
        negative_prompt=[neg_prompt]*len(lq),
        guidance_scale=cfg_scale,
        control_guidance_end=guidance_end,
        preview_start=preview_start,
        previewer_scheduler=lcm_scheduler,
        return_dict=False,
        save_preview_row=True,
    )
    for i, preview_img in enumerate(out[1]):
        preview_img.append(f"preview_{i}")
    return out[0][0], out[1]

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # InstantIR: Blind Image Restoration with Instant Generative Reference.

    ### **Official 🤗 Gradio demo of [InstantIR](https://arxiv.org/abs/2410.06551).**
    ### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!**
    ## Basic usage: revitalize your image
    1. Upload an image you want to restore;
    2. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency;
    3. Click `InstantIR magic!`.
    """)
    with gr.Row():
        with gr.Column():
            lq_img = gr.Image(label="Low-quality image", type="pil")      
            
            with gr.Row():
                steps = gr.Number(label="Steps", value=30, step=1)
                cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1)
            
            with gr.Row():
                height = gr.Number(label="Height", value=1024, step=1, visible=False)
                width = gr.Number(label="Width", value=1024, step=1, visible=False)
                seed = gr.Number(label="Seed", value=42, step=1)
            # guidance_start = gr.Slider(label="Guidance Start", value=1.0, minimum=0.0, maximum=1.0, step=0.05)
            guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1)
            preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1)
            prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="")
            mode = gr.Checkbox(label="Creative Restoration", value=False)
    
            with gr.Row():
                restore_btn = gr.Button("InstantIR magic!")
                clear_btn = gr.ClearButton()
            gr.Examples(
                    examples = ["assets/lady.png", "assets/man.png", "assets/dog.png", "assets/panda.png", "assets/sculpture.png", "assets/cottage.png", "assets/Naruto.png", "assets/Konan.png"],
                    inputs = [lq_img]
                )
        with gr.Column():
            output = gr.Image(label="InstantIR restored", type="pil")
            index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1)
            preview = gr.Image(label="Preview", type="pil")
       
    pipe_out = gr.Gallery(visible=False)
    clear_btn.add([lq_img, output, preview])
    restore_btn.click(
        instantir_restore, inputs=[
            lq_img, prompt, steps, cfg_scale, guidance_end,
            mode, seed, height, width, preview_start,
        ],
        outputs=[output, pipe_out], api_name="InstantIR"
    )
    steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end, show_api=False)
    output.change(dynamic_preview_slider, inputs=steps, outputs=index, show_api=False)
    index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview, show_api=False)
    output.change(show_final_preview, inputs=pipe_out, outputs=preview, show_api=False)
    gr.Markdown(
    """
    ## Advance usage:
    ### Browse restoration variants:
    1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions;
    2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result.
    ### Creative restoration:
    1. Check the `Creative Restoration` checkbox;
    2. Input your text prompts in the `Restoration prompts` textbox;
    3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation.
    """)
    gr.Markdown(
    """
    ## Citation
    If InstantIR is helpful to your work, please cite our paper via:

    ```
    @article{huang2024instantir,
        title={InstantIR: Blind Image Restoration with Instant Generative Reference},
        author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse},
        journal={arXiv preprint arXiv:2410.06551},
        year={2024}
    }
    ```
    """)

demo.queue().launch(ssr_mode=False, mcp_server=True)