# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import torch from transformers import AutoConfig, AutoModelForCausalLM from llamafactory.model.model_utils.misc import find_expanded_modules HF_TOKEN = os.getenv("HF_TOKEN") @pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") def test_expanded_modules(): config = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") with torch.device("meta"): model = AutoModelForCausalLM.from_config(config) expanded_modules = find_expanded_modules(model, ["q_proj", "v_proj"], num_layer_trainable=4) assert expanded_modules == [ "model.layers.7.self_attn.q_proj", "model.layers.7.self_attn.v_proj", "model.layers.15.self_attn.q_proj", "model.layers.15.self_attn.v_proj", "model.layers.23.self_attn.q_proj", "model.layers.23.self_attn.v_proj", "model.layers.31.self_attn.q_proj", "model.layers.31.self_attn.v_proj", ]