# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import pytest from llamafactory.chat import ChatModel from llamafactory.extras.packages import is_sglang_available MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct" INFER_ARGS = { "model_name_or_path": MODEL_NAME, "finetuning_type": "lora", "template": "llama3", "infer_dtype": "float16", "infer_backend": "sglang", "do_sample": False, "max_new_tokens": 1, } MESSAGES = [ {"role": "user", "content": "Hi"}, ] @pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed") def test_chat(): r"""Test the SGLang engine's basic chat functionality.""" chat_model = ChatModel(INFER_ARGS) response = chat_model.chat(MESSAGES)[0] # TODO: Change to EXPECTED_RESPONSE print(response.response_text) @pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed") def test_stream_chat(): r"""Test the SGLang engine's streaming chat functionality.""" chat_model = ChatModel(INFER_ARGS) response = "" for token in chat_model.stream_chat(MESSAGES): response += token print("Complete response:", response) assert response, "Should receive a non-empty response" # Run tests if executed directly if __name__ == "__main__": if not is_sglang_available(): print("SGLang is not available. Please install it.") sys.exit(1) test_chat() test_stream_chat()