# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer from ...extras.ploting import plot_loss from ...model import load_model, load_tokenizer from ..callbacks import fix_valuehead_checkpoint from ..trainer_utils import create_modelcard_and_push from .metric import ComputeAccuracy from .trainer import PairwiseTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from ...hparams import DataArguments, FinetuningArguments, ModelArguments def run_rm( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[list["TrainerCallback"]] = None, ): tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True) data_collator = PairwiseDataCollatorWithPadding( template=template, model=model, pad_to_multiple_of=8, **tokenizer_module ) # Initialize our Trainer trainer = PairwiseTrainer( model=model, args=training_args, finetuning_args=finetuning_args, data_collator=data_collator, callbacks=callbacks, compute_metrics=ComputeAccuracy(), **dataset_module, **tokenizer_module, ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() if training_args.should_save: fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: keys = ["loss"] if isinstance(dataset_module.get("eval_dataset"), dict): keys += sum( [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], [] ) else: keys += ["eval_loss", "eval_accuracy"] plot_loss(training_args.output_dir, keys=keys) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict") trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(predict_results) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)