# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from transformers.utils import cached_file from ...extras import logging from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME if TYPE_CHECKING: from transformers import PreTrainedModel from ...hparams import ModelArguments logger = logging.get_logger(__name__) def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> dict[str, torch.Tensor]: r"""Load value head parameters from Hugging Face Hub or local disk. Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. """ kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token} err_text = "" try: from safetensors import safe_open vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs) with safe_open(vhead_file, framework="pt", device="cpu") as f: return {key: f.get_tensor(key) for key in f.keys()} except Exception as err: err_text = str(err) try: vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs) return torch.load(vhead_file, map_location="cpu") except Exception as err: err_text = str(err) logger.info_rank0(f"Provided path ({path_or_repo_id}) does not contain value head weights: {err_text}.") logger.info_rank0("Ignore the above message if you are not resuming the training of a value head model.") return None def prepare_valuehead_model(model: "PreTrainedModel") -> None: if getattr(model.config, "model_type", None) == "llava": setattr(model, "lm_head", model.language_model.get_output_embeddings()) setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) if getattr(model.config, "model_type", None) == "chatglm": setattr(model, "lm_head", model.transformer.output_layer) setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) if getattr(model.config, "model_type", None) == "internlm2": setattr(model, "lm_head", model.output) setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])