# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from dataclasses import asdict, dataclass, field, fields from typing import Any, Literal, Optional, Union import torch from transformers.training_args import _convert_str_dict from typing_extensions import Self from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling @dataclass class BaseModelArguments: r"""Arguments pertaining to the model.""" model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models." }, ) adapter_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "Path to the adapter weight or identifier from huggingface.co/models. " "Use commas to separate multiple adapters." ) }, ) adapter_folder: Optional[str] = field( default=None, metadata={"help": "The folder containing the adapter weights to load."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}, ) resize_vocab: bool = field( default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}, ) split_special_tokens: bool = field( default=False, metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}, ) add_tokens: Optional[str] = field( default=None, metadata={ "help": "Non-special tokens to be added into the tokenizer. Use commas to separate multiple tokens." }, ) add_special_tokens: Optional[str] = field( default=None, metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) low_cpu_mem_usage: bool = field( default=True, metadata={"help": "Whether or not to use memory-efficient model loading."}, ) rope_scaling: Optional[RopeScaling] = field( default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}, ) flash_attn: AttentionFunction = field( default=AttentionFunction.AUTO, metadata={"help": "Enable FlashAttention for faster training and inference."}, ) shift_attn: bool = field( default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}, ) mixture_of_depths: Optional[Literal["convert", "load"]] = field( default=None, metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."}, ) use_unsloth: bool = field( default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}, ) use_unsloth_gc: bool = field( default=False, metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."}, ) enable_liger_kernel: bool = field( default=False, metadata={"help": "Whether or not to enable liger kernel for faster training."}, ) moe_aux_loss_coef: Optional[float] = field( default=None, metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."}, ) disable_gradient_checkpointing: bool = field( default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}, ) use_reentrant_gc: bool = field( default=True, metadata={"help": "Whether or not to use reentrant gradient checkpointing."}, ) upcast_layernorm: bool = field( default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}, ) upcast_lmhead_output: bool = field( default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}, ) train_from_scratch: bool = field( default=False, metadata={"help": "Whether or not to randomly initialize the model weights."}, ) infer_backend: EngineName = field( default=EngineName.HF, metadata={"help": "Backend engine used at inference."}, ) offload_folder: str = field( default="offload", metadata={"help": "Path to offload model weights."}, ) use_cache: bool = field( default=True, metadata={"help": "Whether or not to use KV cache in generation."}, ) infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field( default="auto", metadata={"help": "Data type for model weights and activations at inference."}, ) hf_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."}, ) ms_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with ModelScope Hub."}, ) om_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with Modelers Hub."}, ) print_param_status: bool = field( default=False, metadata={"help": "For debugging purposes, print the status of the parameters in the model."}, ) trust_remote_code: bool = field( default=False, metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."}, ) def __post_init__(self): if self.model_name_or_path is None: raise ValueError("Please provide `model_name_or_path`.") if self.split_special_tokens and self.use_fast_tokenizer: raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") if self.adapter_name_or_path is not None: # support merging multiple lora weights self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")] if self.add_tokens is not None: # support multiple tokens self.add_tokens = [token.strip() for token in self.add_tokens.split(",")] if self.add_special_tokens is not None: # support multiple special tokens self.add_special_tokens = [token.strip() for token in self.add_special_tokens.split(",")] @dataclass class QuantizationArguments: r"""Arguments pertaining to the quantization method.""" quantization_method: QuantizationMethod = field( default=QuantizationMethod.BNB, metadata={"help": "Quantization method to use for on-the-fly quantization."}, ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."}, ) quantization_type: Literal["fp4", "nf4"] = field( default="nf4", metadata={"help": "Quantization data type to use in bitsandbytes int4 training."}, ) double_quantization: bool = field( default=True, metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."}, ) quantization_device_map: Optional[Literal["auto"]] = field( default=None, metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."}, ) @dataclass class ProcessorArguments: r"""Arguments pertaining to the image processor.""" image_max_pixels: int = field( default=768 * 768, metadata={"help": "The maximum number of pixels of image inputs."}, ) image_min_pixels: int = field( default=32 * 32, metadata={"help": "The minimum number of pixels of image inputs."}, ) image_do_pan_and_scan: bool = field( default=False, metadata={"help": "Use pan and scan to process image for gemma3."}, ) crop_to_patches: bool = field( default=False, metadata={"help": "Whether to crop the image to patches for internvl."}, ) use_audio_in_video: bool = field( default=False, metadata={"help": "Whether or not to use audio in video inputs."}, ) video_max_pixels: int = field( default=256 * 256, metadata={"help": "The maximum number of pixels of video inputs."}, ) video_min_pixels: int = field( default=16 * 16, metadata={"help": "The minimum number of pixels of video inputs."}, ) video_fps: float = field( default=2.0, metadata={"help": "The frames to sample per second for video inputs."}, ) video_maxlen: int = field( default=128, metadata={"help": "The maximum number of sampled frames for video inputs."}, ) audio_sampling_rate: int = field( default=16000, metadata={"help": "The sampling rate of audio inputs."}, ) def __post_init__(self): if self.image_max_pixels < self.image_min_pixels: raise ValueError("`image_max_pixels` cannot be smaller than `image_min_pixels`.") if self.video_max_pixels < self.video_min_pixels: raise ValueError("`video_max_pixels` cannot be smaller than `video_min_pixels`.") @dataclass class ExportArguments: r"""Arguments pertaining to the model export.""" export_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory to save the exported model."}, ) export_size: int = field( default=5, metadata={"help": "The file shard size (in GB) of the exported model."}, ) export_device: Literal["cpu", "auto"] = field( default="cpu", metadata={"help": "The device used in model export, use `auto` to accelerate exporting."}, ) export_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the exported model."}, ) export_quantization_dataset: Optional[str] = field( default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}, ) export_quantization_nsamples: int = field( default=128, metadata={"help": "The number of samples used for quantization."}, ) export_quantization_maxlen: int = field( default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}, ) export_legacy_format: bool = field( default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}, ) export_hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}, ) def __post_init__(self): if self.export_quantization_bit is not None and self.export_quantization_dataset is None: raise ValueError("Quantization dataset is necessary for exporting.") @dataclass class VllmArguments: r"""Arguments pertaining to the vLLM worker.""" vllm_maxlen: int = field( default=4096, metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."}, ) vllm_gpu_util: float = field( default=0.7, metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."}, ) vllm_enforce_eager: bool = field( default=False, metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."}, ) vllm_max_lora_rank: int = field( default=32, metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."}, ) vllm_config: Optional[Union[dict, str]] = field( default=None, metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."}, ) def __post_init__(self): if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"): self.vllm_config = _convert_str_dict(json.loads(self.vllm_config)) @dataclass class SGLangArguments: r"""Arguments pertaining to the SGLang worker.""" sglang_maxlen: int = field( default=4096, metadata={"help": "Maximum sequence (prompt + response) length of the SGLang engine."}, ) sglang_mem_fraction: float = field( default=0.7, metadata={"help": "The memory fraction (0-1) to be used for the SGLang engine."}, ) sglang_tp_size: int = field( default=-1, metadata={"help": "Tensor parallel size for the SGLang engine."}, ) sglang_config: Optional[Union[dict, str]] = field( default=None, metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."}, ) def __post_init__(self): if isinstance(self.sglang_config, str) and self.sglang_config.startswith("{"): self.sglang_config = _convert_str_dict(json.loads(self.sglang_config)) @dataclass class ModelArguments( SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments ): r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer. The class on the most right will be displayed first. """ compute_dtype: Optional[torch.dtype] = field( default=None, init=False, metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."}, ) device_map: Optional[Union[str, dict[str, Any]]] = field( default=None, init=False, metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."}, ) model_max_length: Optional[int] = field( default=None, init=False, metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."}, ) block_diag_attn: bool = field( default=False, init=False, metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."}, ) def __post_init__(self): BaseModelArguments.__post_init__(self) ProcessorArguments.__post_init__(self) ExportArguments.__post_init__(self) VllmArguments.__post_init__(self) SGLangArguments.__post_init__(self) @classmethod def copyfrom(cls, source: "Self", **kwargs) -> "Self": init_args, lazy_args = {}, {} for attr in fields(source): if attr.init: init_args[attr.name] = getattr(source, attr.name) else: lazy_args[attr.name] = getattr(source, attr.name) init_args.update(kwargs) result = cls(**init_args) for name, value in lazy_args.items(): setattr(result, name, value) return result def to_dict(self) -> dict[str, Any]: args = asdict(self) args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()} return args