# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from itertools import chain from typing import Any from .processor_utils import DatasetProcessor @dataclass class PretrainDatasetProcessor(DatasetProcessor): def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]: # build grouped texts with format `X1 X2 X3 ...` if packing is enabled eos_token = "<|end_of_text|>" if self.data_args.template == "llama3" else self.tokenizer.eos_token text_examples = [messages[0]["content"] + eos_token for messages in examples["_prompt"]] if not self.data_args.packing: if getattr(self.tokenizer, "add_bos_token", False): text_examples = [self.tokenizer.bos_token + example for example in text_examples] result = self.tokenizer( text_examples, add_special_tokens=False, truncation=True, max_length=self.data_args.cutoff_len ) else: tokenized_examples = self.tokenizer(text_examples, add_special_tokens=False) concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) block_size = self.data_args.cutoff_len total_length = (total_length // block_size) * block_size result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } if getattr(self.tokenizer, "add_bos_token", False): for i in range(len(result["input_ids"])): result["input_ids"][i][0] = self.tokenizer.bos_token_id return result def print_data_example(self, example: dict[str, list[int]]) -> None: print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))