# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import os from contextlib import asynccontextmanager from functools import partial from typing import Annotated, Optional from ..chat import ChatModel from ..extras.constants import EngineName from ..extras.misc import torch_gc from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available from .chat import ( create_chat_completion_response, create_score_evaluation_response, create_stream_chat_completion_response, ) from .protocol import ( ChatCompletionRequest, ChatCompletionResponse, ModelCard, ModelList, ScoreEvaluationRequest, ScoreEvaluationResponse, ) if is_fastapi_available(): from fastapi import Depends, FastAPI, HTTPException, status from fastapi.middleware.cors import CORSMiddleware from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer if is_starlette_available(): from sse_starlette import EventSourceResponse if is_uvicorn_available(): import uvicorn async def sweeper() -> None: while True: torch_gc() await asyncio.sleep(300) @asynccontextmanager async def lifespan(app: "FastAPI", chat_model: "ChatModel"): # collects GPU memory if chat_model.engine.name == EngineName.HF: asyncio.create_task(sweeper()) yield torch_gc() def create_app(chat_model: "ChatModel") -> "FastAPI": root_path = os.getenv("FASTAPI_ROOT_PATH", "") app = FastAPI(lifespan=partial(lifespan, chat_model=chat_model), root_path=root_path) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) api_key = os.getenv("API_KEY") security = HTTPBearer(auto_error=False) async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]): if api_key and (auth is None or auth.credentials != api_key): raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.") @app.get( "/v1/models", response_model=ModelList, status_code=status.HTTP_200_OK, dependencies=[Depends(verify_api_key)], ) async def list_models(): model_card = ModelCard(id=os.getenv("API_MODEL_NAME", "gpt-3.5-turbo")) return ModelList(data=[model_card]) @app.post( "/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK, dependencies=[Depends(verify_api_key)], ) async def create_chat_completion(request: ChatCompletionRequest): if not chat_model.engine.can_generate: raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") if request.stream: generate = create_stream_chat_completion_response(request, chat_model) return EventSourceResponse(generate, media_type="text/event-stream", sep="\n") else: return await create_chat_completion_response(request, chat_model) @app.post( "/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK, dependencies=[Depends(verify_api_key)], ) async def create_score_evaluation(request: ScoreEvaluationRequest): if chat_model.engine.can_generate: raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") return await create_score_evaluation_response(request, chat_model) return app def run_api() -> None: chat_model = ChatModel() app = create_app(chat_model) api_host = os.getenv("API_HOST", "0.0.0.0") api_port = int(os.getenv("API_PORT", "8000")) print(f"Visit http://localhost:{api_port}/docs for API document.") uvicorn.run(app, host=api_host, port=api_port)