Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from dataclasses import dataclass, field | |
from typing import Any | |
import pytest | |
from transformers import DataCollatorWithPadding | |
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer | |
from llamafactory.hparams import get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer | |
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") | |
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA3, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "lora", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"overwrite_output_dir": True, | |
"per_device_train_batch_size": 1, | |
"max_steps": 1, | |
"report_to": "none", | |
} | |
class DataCollatorWithVerbose(DataCollatorWithPadding): | |
verbose_list: list[dict[str, Any]] = field(default_factory=list) | |
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]: | |
features = [ | |
{k: v for k, v in feature.items() if k in ["input_ids", "attention_mask", "labels"]} | |
for feature in features | |
] | |
self.verbose_list.extend(features) | |
batch = super().__call__(features) | |
return {k: v[:, :1] for k, v in batch.items()} # truncate input length | |
def test_shuffle(disable_shuffling: bool): | |
model_args, data_args, training_args, finetuning_args, _ = get_train_args( | |
{ | |
"output_dir": os.path.join("output", f"shuffle{str(disable_shuffling).lower()}"), | |
"disable_shuffling": disable_shuffling, | |
**TRAIN_ARGS, | |
} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
template = get_template_and_fix_tokenizer(tokenizer, data_args) | |
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
data_collator = DataCollatorWithVerbose(tokenizer=tokenizer) | |
trainer = CustomSeq2SeqTrainer( | |
model=model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
**dataset_module, | |
**tokenizer_module, | |
) | |
trainer.train() | |
if disable_shuffling: | |
assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"] | |
else: | |
assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"] | |