Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import pytest | |
import torch | |
from llamafactory.train.test_utils import ( | |
check_lora_model, | |
compare_model, | |
load_infer_model, | |
load_reference_model, | |
load_train_model, | |
patch_valuehead_model, | |
) | |
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
TINY_LLAMA_ADAPTER = os.getenv("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") | |
TINY_LLAMA_VALUEHEAD = os.getenv("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA3, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "lora", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
INFER_ARGS = { | |
"model_name_or_path": TINY_LLAMA3, | |
"adapter_name_or_path": TINY_LLAMA_ADAPTER, | |
"finetuning_type": "lora", | |
"template": "llama3", | |
"infer_dtype": "float16", | |
} | |
def fix_valuehead_cpu_loading(): | |
patch_valuehead_model() | |
def test_lora_train_qv_modules(): | |
model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS) | |
linear_modules, _ = check_lora_model(model) | |
assert linear_modules == {"q_proj", "v_proj"} | |
def test_lora_train_all_modules(): | |
model = load_train_model(lora_target="all", **TRAIN_ARGS) | |
linear_modules, _ = check_lora_model(model) | |
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} | |
def test_lora_train_extra_modules(): | |
model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS) | |
_, extra_modules = check_lora_model(model) | |
assert extra_modules == {"embed_tokens", "lm_head"} | |
def test_lora_train_old_adapters(): | |
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS) | |
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) | |
compare_model(model, ref_model) | |
def test_lora_train_new_adapters(): | |
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS) | |
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) | |
compare_model( | |
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] | |
) | |
def test_lora_train_valuehead(): | |
model = load_train_model(add_valuehead=True, **TRAIN_ARGS) | |
ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, is_trainable=True, add_valuehead=True) | |
state_dict = model.state_dict() | |
ref_state_dict = ref_model.state_dict() | |
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) | |
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) | |
def test_lora_inference(): | |
model = load_infer_model(**INFER_ARGS) | |
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload() | |
compare_model(model, ref_model) | |