Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import TYPE_CHECKING | |
import pytest | |
from transformers import AutoTokenizer | |
from llamafactory.data import get_template_and_fix_tokenizer | |
from llamafactory.data.template import parse_template | |
from llamafactory.hparams import DataArguments | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
TINY_LLAMA4 = os.getenv("TINY_LLAMA4", "llamafactory/tiny-random-Llama-4") | |
MESSAGES = [ | |
{"role": "user", "content": "How are you"}, | |
{"role": "assistant", "content": "I am fine!"}, | |
{"role": "user", "content": "你好"}, | |
{"role": "assistant", "content": "很高兴认识你!"}, | |
] | |
MESSAGES_WITH_THOUGHT = [ | |
{"role": "user", "content": "How are you"}, | |
{"role": "assistant", "content": "<think>\nModel thought here\n</think>\n\nI am fine!"}, | |
{"role": "user", "content": "你好"}, | |
{"role": "assistant", "content": "<think>\n模型思考内容\n</think>\n\n很高兴认识你!"}, | |
] | |
def _check_tokenization( | |
tokenizer: "PreTrainedTokenizer", batch_input_ids: list[list[int]], batch_text: list[str] | |
) -> None: | |
r"""Check token ids and texts. | |
encode(text) == token_ids | |
decode(token_ids) == text | |
""" | |
for input_ids, text in zip(batch_input_ids, batch_text): | |
assert tokenizer.encode(text, add_special_tokens=False) == input_ids | |
assert tokenizer.decode(input_ids) == text | |
def _check_template( | |
model_id: str, | |
template_name: str, | |
prompt_str: str, | |
answer_str: str, | |
use_fast: bool, | |
messages: list[dict[str, str]] = MESSAGES, | |
) -> None: | |
r"""Check template. | |
Args: | |
model_id: the model id on hugging face hub. | |
template_name: the template name. | |
prompt_str: the string corresponding to the prompt part. | |
answer_str: the string corresponding to the answer part. | |
use_fast: whether to use fast tokenizer. | |
messages: the list of messages. | |
""" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN) | |
content_str = tokenizer.apply_chat_template(messages, tokenize=False) | |
content_ids = tokenizer.apply_chat_template(messages, tokenize=True) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name)) | |
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, messages) | |
assert content_str == prompt_str + answer_str | |
assert content_ids == prompt_ids + answer_ids | |
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) | |
def test_encode_oneturn(use_fast: bool): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) | |
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) | |
prompt_str = ( | |
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" | |
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
answer_str = "很高兴认识你!<|eot_id|>" | |
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) | |
def test_encode_multiturn(use_fast: bool): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) | |
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) | |
prompt_str_1 = ( | |
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
answer_str_1 = "I am fine!<|eot_id|>" | |
prompt_str_2 = ( | |
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
answer_str_2 = "很高兴认识你!<|eot_id|>" | |
_check_tokenization( | |
tokenizer, | |
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]), | |
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2), | |
) | |
def test_reasoning_encode_oneturn(use_fast: bool): | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", use_fast=use_fast) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="qwen3")) | |
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) | |
prompt_str = ( | |
"<|im_start|>user\nHow are you<|im_end|>\n" | |
"<|im_start|>assistant\nI am fine!<|im_end|>\n" | |
"<|im_start|>user\n你好<|im_end|>\n" | |
"<|im_start|>assistant\n<think>\n\n</think>\n\n" | |
) | |
answer_str = "很高兴认识你!<|im_end|>\n" | |
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) | |
def test_reasoning_encode_multiturn(use_fast: bool): | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", use_fast=use_fast) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="qwen3")) | |
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) | |
prompt_str_1 = "<|im_start|>user\nHow are you<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n" | |
answer_str_1 = "I am fine!<|im_end|>\n" | |
prompt_str_2 = "<|im_start|>user\n你好<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n" | |
answer_str_2 = "很高兴认识你!<|im_end|>\n" | |
_check_tokenization( | |
tokenizer, | |
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]), | |
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2), | |
) | |
def test_jinja_template(use_fast: bool): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast) | |
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) | |
tokenizer.chat_template = template._get_jinja_template(tokenizer) # llama3 template no replace | |
assert tokenizer.chat_template != ref_tokenizer.chat_template | |
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES) | |
def test_ollama_modelfile(): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) | |
assert template.get_ollama_modelfile(tokenizer) == ( | |
"# ollama modelfile auto-generated by llamafactory\n\n" | |
"FROM .\n\n" | |
'TEMPLATE """<|begin_of_text|>' | |
"{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}" | |
'{{ range .Messages }}{{ if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Content }}' | |
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
'{{ else if eq .Role "assistant" }}{{ .Content }}<|eot_id|>{{ end }}{{ end }}"""\n\n' | |
'PARAMETER stop "<|eom_id|>"\n' | |
'PARAMETER stop "<|eot_id|>"\n' | |
"PARAMETER num_ctx 4096\n" | |
) | |
def test_get_stop_token_ids(): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) | |
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009} | |
def test_gemma_template(use_fast: bool): | |
prompt_str = ( | |
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n" | |
"<start_of_turn>model\nI am fine!<end_of_turn>\n" | |
"<start_of_turn>user\n你好<end_of_turn>\n" | |
"<start_of_turn>model\n" | |
) | |
answer_str = "很高兴认识你!<end_of_turn>\n" | |
_check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str, use_fast) | |
def test_llama3_template(use_fast: bool): | |
prompt_str = ( | |
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" | |
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
answer_str = "很高兴认识你!<|eot_id|>" | |
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast) | |
def test_llama4_template(use_fast: bool): | |
prompt_str = ( | |
"<|begin_of_text|><|header_start|>user<|header_end|>\n\nHow are you<|eot|>" | |
"<|header_start|>assistant<|header_end|>\n\nI am fine!<|eot|>" | |
"<|header_start|>user<|header_end|>\n\n你好<|eot|>" | |
"<|header_start|>assistant<|header_end|>\n\n" | |
) | |
answer_str = "很高兴认识你!<|eot|>" | |
_check_template(TINY_LLAMA4, "llama4", prompt_str, answer_str, use_fast) | |
def test_phi4_template(use_fast: bool): | |
prompt_str = ( | |
"<|im_start|>user<|im_sep|>How are you<|im_end|>" | |
"<|im_start|>assistant<|im_sep|>I am fine!<|im_end|>" | |
"<|im_start|>user<|im_sep|>你好<|im_end|>" | |
"<|im_start|>assistant<|im_sep|>" | |
) | |
answer_str = "很高兴认识你!<|im_end|>" | |
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast) | |
def test_qwen2_5_template(use_fast: bool): | |
prompt_str = ( | |
"<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n" | |
"<|im_start|>user\nHow are you<|im_end|>\n" | |
"<|im_start|>assistant\nI am fine!<|im_end|>\n" | |
"<|im_start|>user\n你好<|im_end|>\n" | |
"<|im_start|>assistant\n" | |
) | |
answer_str = "很高兴认识你!<|im_end|>\n" | |
_check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str, use_fast) | |
def test_qwen3_template(use_fast: bool): | |
prompt_str = ( | |
"<|im_start|>user\nHow are you<|im_end|>\n" | |
"<|im_start|>assistant\nI am fine!<|im_end|>\n" | |
"<|im_start|>user\n你好<|im_end|>\n" | |
"<|im_start|>assistant\n<think>\n\n</think>\n\n" | |
) | |
answer_str = "很高兴认识你!<|im_end|>\n" | |
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, use_fast) | |
prompt_str = ( | |
"<|im_start|>user\nHow are you<|im_end|>\n" | |
"<|im_start|>assistant\nI am fine!<|im_end|>\n" | |
"<|im_start|>user\n你好<|im_end|>\n" | |
"<|im_start|>assistant\n" | |
) | |
answer_str = "<think>\n模型思考内容\n</think>\n\n很高兴认识你!<|im_end|>\n" | |
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, use_fast, messages=MESSAGES_WITH_THOUGHT) | |
def test_parse_llama3_template(): | |
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, token=HF_TOKEN) | |
template = parse_template(tokenizer) | |
assert template.format_user.slots == [ | |
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
] | |
assert template.format_assistant.slots == ["{{content}}<|eot_id|>"] | |
assert template.format_system.slots == ["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"] | |
assert template.format_prefix.slots == ["<|begin_of_text|>"] | |
assert template.default_system == "" | |
def test_parse_qwen_template(): | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", token=HF_TOKEN) | |
template = parse_template(tokenizer) | |
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"] | |
assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"] | |
assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"] | |
assert template.format_prefix.slots == [] | |
assert template.default_system == "You are Qwen, created by Alibaba Cloud. You are a helpful assistant." | |
def test_parse_qwen3_template(): | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", token=HF_TOKEN) | |
template = parse_template(tokenizer) | |
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"] | |
assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"] | |
assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"] | |
assert template.format_prefix.slots == [] | |
assert template.default_system == "" | |