Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import torch | |
from PIL import Image | |
from llamafactory.data import get_template_and_fix_tokenizer | |
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask | |
from llamafactory.extras.constants import IGNORE_INDEX | |
from llamafactory.hparams import get_infer_args | |
from llamafactory.model import load_tokenizer | |
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
def test_base_collator(): | |
model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"}) | |
tokenizer_module = load_tokenizer(model_args) | |
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) | |
data_collator = MultiModalDataCollatorForSeq2Seq( | |
template=template, | |
pad_to_multiple_of=8, | |
label_pad_token_id=IGNORE_INDEX, | |
**tokenizer_module, | |
) | |
p = tokenizer_module["tokenizer"].pad_token_id | |
q = IGNORE_INDEX | |
features = [ | |
{ | |
"input_ids": [0, 1, 2, 3, 4, 5], | |
"attention_mask": [1, 1, 1, 1, 1, 1], | |
"labels": [q, q, 2, 3, 4, 5], | |
}, | |
{ | |
"input_ids": [6, 7], | |
"attention_mask": [1, 1], | |
"labels": [q, 7], | |
}, | |
] | |
batch_input = data_collator(features) | |
expected_input = { | |
"input_ids": [ | |
[0, 1, 2, 3, 4, 5, p, p], | |
[6, 7, p, p, p, p, p, p], | |
], | |
"attention_mask": [ | |
[1, 1, 1, 1, 1, 1, 0, 0], | |
[1, 1, 0, 0, 0, 0, 0, 0], | |
], | |
"labels": [ | |
[q, q, 2, 3, 4, 5, q, q], | |
[q, 7, q, q, q, q, q, q], | |
], | |
} | |
for k in batch_input.keys(): | |
assert batch_input[k].eq(torch.tensor(expected_input[k])).all() | |
def test_multimodal_collator(): | |
model_args, data_args, *_ = get_infer_args( | |
{"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) | |
data_collator = MultiModalDataCollatorForSeq2Seq( | |
template=template, | |
pad_to_multiple_of=4, | |
label_pad_token_id=IGNORE_INDEX, | |
**tokenizer_module, | |
) | |
p = tokenizer_module["tokenizer"].pad_token_id | |
q = IGNORE_INDEX | |
s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>") | |
e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>") | |
m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>") | |
fake_image = Image.new("RGB", (64, 64), (255, 255, 255)) | |
features = [ | |
{ | |
"input_ids": [0, 1, 2, 3], | |
"attention_mask": [1, 1, 1, 1], | |
"labels": [0, 1, 2, 3], | |
}, | |
] | |
batch_input = data_collator(features) | |
expected_input = { | |
"input_ids": [ | |
[0, 1, 2, 3, s, m, m, m, m, e, p, p], | |
], | |
"attention_mask": [ | |
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], | |
], | |
"labels": [ | |
[0, 1, 2, 3, q, q, q, q, q, q, q, q], | |
], | |
**tokenizer_module["processor"].image_processor(fake_image), | |
} | |
for k in batch_input.keys(): | |
assert batch_input[k].eq(torch.tensor(expected_input[k])).all() | |
def test_4d_attention_mask(): | |
o = 0.0 | |
x = torch.finfo(torch.float16).min | |
attention_mask_with_indices = torch.tensor( | |
[ | |
[1, 1, 2, 2, 2, 0], | |
[1, 2, 2, 3, 3, 3], | |
] | |
) | |
attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16) | |
attention_mask_expected = torch.tensor( | |
[ | |
[ | |
[ | |
[o, x, x, x, x, x], | |
[o, o, x, x, x, x], | |
[x, x, o, x, x, x], | |
[x, x, o, o, x, x], | |
[x, x, o, o, o, x], | |
[x, x, x, x, x, x], | |
] | |
], | |
[ | |
[ | |
[o, x, x, x, x, x], | |
[x, o, x, x, x, x], | |
[x, o, o, x, x, x], | |
[x, x, x, o, x, x], | |
[x, x, x, o, o, x], | |
[x, x, x, o, o, o], | |
] | |
], | |
], | |
dtype=torch.float16, | |
) | |
assert list(attention_mask_computed.size()) == [2, 1, 6, 6] | |
assert torch.all(attention_mask_computed == attention_mask_expected) | |