Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import random | |
import pytest | |
from datasets import load_dataset | |
from transformers import AutoTokenizer | |
from llamafactory.extras.constants import IGNORE_INDEX | |
from llamafactory.train.test_utils import load_dataset_module | |
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") | |
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA3, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "full", | |
"template": "llama3", | |
"cutoff_len": 8192, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
def test_supervised_single_turn(num_samples: int): | |
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"] | |
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
original_data = load_dataset(TINY_DATA, split="train") | |
indexes = random.choices(range(len(original_data)), k=num_samples) | |
for index in indexes: | |
prompt = original_data["instruction"][index] | |
if original_data["input"][index]: | |
prompt += "\n" + original_data["input"][index] | |
messages = [ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": original_data["output"][index]}, | |
] | |
ref_input_ids = ref_tokenizer.apply_chat_template(messages) | |
assert train_dataset["input_ids"][index] == ref_input_ids | |
def test_supervised_multi_turn(num_samples: int): | |
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[ | |
"train_dataset" | |
] | |
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") | |
indexes = random.choices(range(len(original_data)), k=num_samples) | |
for index in indexes: | |
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) | |
assert train_dataset["input_ids"][index] == ref_input_ids | |
def test_supervised_train_on_prompt(num_samples: int): | |
train_dataset = load_dataset_module( | |
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS | |
)["train_dataset"] | |
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") | |
indexes = random.choices(range(len(original_data)), k=num_samples) | |
for index in indexes: | |
ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) | |
assert train_dataset["input_ids"][index] == ref_ids | |
assert train_dataset["labels"][index] == ref_ids | |
def test_supervised_mask_history(num_samples: int): | |
train_dataset = load_dataset_module( | |
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS | |
)["train_dataset"] | |
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3) | |
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") | |
indexes = random.choices(range(len(original_data)), k=num_samples) | |
for index in indexes: | |
messages = original_data["messages"][index] | |
ref_input_ids = ref_tokenizer.apply_chat_template(messages) | |
prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)) | |
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:] | |
assert train_dataset["input_ids"][index] == ref_input_ids | |
assert train_dataset["labels"][index] == ref_label_ids | |