Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import signal | |
from collections import defaultdict | |
from datetime import datetime | |
from typing import Any, Optional, Union | |
from psutil import Process | |
from yaml import safe_dump, safe_load | |
from ..extras import logging | |
from ..extras.constants import ( | |
DATA_CONFIG, | |
DEFAULT_TEMPLATE, | |
MULTIMODAL_SUPPORTED_MODELS, | |
SUPPORTED_MODELS, | |
TRAINING_ARGS, | |
DownloadSource, | |
) | |
from ..extras.misc import use_modelscope, use_openmind | |
logger = logging.get_logger(__name__) | |
DEFAULT_CACHE_DIR = "cache" | |
DEFAULT_CONFIG_DIR = "config" | |
DEFAULT_DATA_DIR = "data" | |
DEFAULT_SAVE_DIR = "saves" | |
USER_CONFIG = "user_config.yaml" | |
def abort_process(pid: int) -> None: | |
r"""Abort the processes recursively in a bottom-up way.""" | |
try: | |
children = Process(pid).children() | |
if children: | |
for child in children: | |
abort_process(child.pid) | |
os.kill(pid, signal.SIGABRT) | |
except Exception: | |
pass | |
def get_save_dir(*paths: str) -> os.PathLike: | |
r"""Get the path to saved model checkpoints.""" | |
if os.path.sep in paths[-1]: | |
logger.warning_rank0("Found complex path, some features may be not available.") | |
return paths[-1] | |
paths = (path.replace(" ", "").strip() for path in paths) | |
return os.path.join(DEFAULT_SAVE_DIR, *paths) | |
def _get_config_path() -> os.PathLike: | |
r"""Get the path to user config.""" | |
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) | |
def load_config() -> dict[str, Union[str, dict[str, Any]]]: | |
r"""Load user config if exists.""" | |
try: | |
with open(_get_config_path(), encoding="utf-8") as f: | |
return safe_load(f) | |
except Exception: | |
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} | |
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: | |
r"""Save user config.""" | |
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) | |
user_config = load_config() | |
user_config["lang"] = lang or user_config["lang"] | |
if model_name: | |
user_config["last_model"] = model_name | |
if model_name and model_path: | |
user_config["path_dict"][model_name] = model_path | |
with open(_get_config_path(), "w", encoding="utf-8") as f: | |
safe_dump(user_config, f) | |
def get_model_path(model_name: str) -> str: | |
r"""Get the model path according to the model name.""" | |
user_config = load_config() | |
path_dict: dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) | |
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "") | |
if ( | |
use_modelscope() | |
and path_dict.get(DownloadSource.MODELSCOPE) | |
and model_path == path_dict.get(DownloadSource.DEFAULT) | |
): # replace hf path with ms path | |
model_path = path_dict.get(DownloadSource.MODELSCOPE) | |
if ( | |
use_openmind() | |
and path_dict.get(DownloadSource.OPENMIND) | |
and model_path == path_dict.get(DownloadSource.DEFAULT) | |
): # replace hf path with om path | |
model_path = path_dict.get(DownloadSource.OPENMIND) | |
return model_path | |
def get_template(model_name: str) -> str: | |
r"""Get the template name if the model is a chat/distill/instruct model.""" | |
return DEFAULT_TEMPLATE.get(model_name, "default") | |
def get_time() -> str: | |
r"""Get current date and time.""" | |
return datetime.now().strftime(r"%Y-%m-%d-%H-%M-%S") | |
def is_multimodal(model_name: str) -> bool: | |
r"""Judge if the model is a vision language model.""" | |
return model_name in MULTIMODAL_SUPPORTED_MODELS | |
def load_dataset_info(dataset_dir: str) -> dict[str, dict[str, Any]]: | |
r"""Load dataset_info.json.""" | |
if dataset_dir == "ONLINE" or dataset_dir.startswith("REMOTE:"): | |
logger.info_rank0(f"dataset_dir is {dataset_dir}, using online dataset.") | |
return {} | |
try: | |
with open(os.path.join(dataset_dir, DATA_CONFIG), encoding="utf-8") as f: | |
return json.load(f) | |
except Exception as err: | |
logger.warning_rank0(f"Cannot open {os.path.join(dataset_dir, DATA_CONFIG)} due to {str(err)}.") | |
return {} | |
def load_args(config_path: str) -> Optional[dict[str, Any]]: | |
r"""Load the training configuration from config path.""" | |
try: | |
with open(config_path, encoding="utf-8") as f: | |
return safe_load(f) | |
except Exception: | |
return None | |
def save_args(config_path: str, config_dict: dict[str, Any]) -> None: | |
r"""Save the training configuration to config path.""" | |
with open(config_path, "w", encoding="utf-8") as f: | |
safe_dump(config_dict, f) | |
def _clean_cmd(args: dict[str, Any]) -> dict[str, Any]: | |
r"""Remove args with NoneType or False or empty string value.""" | |
no_skip_keys = ["packing"] | |
return {k: v for k, v in args.items() if (k in no_skip_keys) or (v is not None and v is not False and v != "")} | |
def gen_cmd(args: dict[str, Any]) -> str: | |
r"""Generate CLI commands for previewing.""" | |
cmd_lines = ["llamafactory-cli train "] | |
for k, v in _clean_cmd(args).items(): | |
if isinstance(v, dict): | |
cmd_lines.append(f" --{k} {json.dumps(v, ensure_ascii=False)} ") | |
elif isinstance(v, list): | |
cmd_lines.append(f" --{k} {' '.join(map(str, v))} ") | |
else: | |
cmd_lines.append(f" --{k} {str(v)} ") | |
if os.name == "nt": | |
cmd_text = "`\n".join(cmd_lines) | |
else: | |
cmd_text = "\\\n".join(cmd_lines) | |
cmd_text = f"```bash\n{cmd_text}\n```" | |
return cmd_text | |
def save_cmd(args: dict[str, Any]) -> str: | |
r"""Save CLI commands to launch training.""" | |
output_dir = args["output_dir"] | |
os.makedirs(output_dir, exist_ok=True) | |
with open(os.path.join(output_dir, TRAINING_ARGS), "w", encoding="utf-8") as f: | |
safe_dump(_clean_cmd(args), f) | |
return os.path.join(output_dir, TRAINING_ARGS) | |
def load_eval_results(path: os.PathLike) -> str: | |
r"""Get scores after evaluation.""" | |
with open(path, encoding="utf-8") as f: | |
result = json.dumps(json.load(f), indent=4) | |
return f"```json\n{result}\n```\n" | |
def create_ds_config() -> None: | |
r"""Create deepspeed config in the current directory.""" | |
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) | |
ds_config = { | |
"train_batch_size": "auto", | |
"train_micro_batch_size_per_gpu": "auto", | |
"gradient_accumulation_steps": "auto", | |
"gradient_clipping": "auto", | |
"zero_allow_untested_optimizer": True, | |
"fp16": { | |
"enabled": "auto", | |
"loss_scale": 0, | |
"loss_scale_window": 1000, | |
"initial_scale_power": 16, | |
"hysteresis": 2, | |
"min_loss_scale": 1, | |
}, | |
"bf16": {"enabled": "auto"}, | |
} | |
offload_config = { | |
"device": "cpu", | |
"pin_memory": True, | |
} | |
ds_config["zero_optimization"] = { | |
"stage": 2, | |
"allgather_partitions": True, | |
"allgather_bucket_size": 5e8, | |
"overlap_comm": True, | |
"reduce_scatter": True, | |
"reduce_bucket_size": 5e8, | |
"contiguous_gradients": True, | |
"round_robin_gradients": True, | |
} | |
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z2_config.json"), "w", encoding="utf-8") as f: | |
json.dump(ds_config, f, indent=2) | |
ds_config["zero_optimization"]["offload_optimizer"] = offload_config | |
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z2_offload_config.json"), "w", encoding="utf-8") as f: | |
json.dump(ds_config, f, indent=2) | |
ds_config["zero_optimization"] = { | |
"stage": 3, | |
"overlap_comm": True, | |
"contiguous_gradients": True, | |
"sub_group_size": 1e9, | |
"reduce_bucket_size": "auto", | |
"stage3_prefetch_bucket_size": "auto", | |
"stage3_param_persistence_threshold": "auto", | |
"stage3_max_live_parameters": 1e9, | |
"stage3_max_reuse_distance": 1e9, | |
"stage3_gather_16bit_weights_on_model_save": True, | |
} | |
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z3_config.json"), "w", encoding="utf-8") as f: | |
json.dump(ds_config, f, indent=2) | |
ds_config["zero_optimization"]["offload_optimizer"] = offload_config | |
ds_config["zero_optimization"]["offload_param"] = offload_config | |
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z3_offload_config.json"), "w", encoding="utf-8") as f: | |
json.dump(ds_config, f, indent=2) | |