Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import shutil | |
from typing import TYPE_CHECKING, Any, Optional | |
import torch | |
import torch.distributed as dist | |
from transformers import EarlyStoppingCallback, PreTrainedModel | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras import logging | |
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME | |
from ..extras.misc import infer_optim_dtype | |
from ..extras.packages import is_ray_available | |
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args | |
from ..model import load_model, load_tokenizer | |
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback | |
from .dpo import run_dpo | |
from .kto import run_kto | |
from .ppo import run_ppo | |
from .pt import run_pt | |
from .rm import run_rm | |
from .sft import run_sft | |
from .trainer_utils import get_ray_trainer, get_swanlab_callback | |
if is_ray_available(): | |
import ray | |
from ray.train.huggingface.transformers import RayTrainReportCallback | |
if TYPE_CHECKING: | |
from transformers import TrainerCallback | |
logger = logging.get_logger(__name__) | |
def _training_function(config: dict[str, Any]) -> None: | |
args = config.get("args") | |
callbacks: list[Any] = config.get("callbacks") | |
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args) | |
callbacks.append(LogCallback()) | |
if finetuning_args.pissa_convert: | |
callbacks.append(PissaConvertCallback()) | |
if finetuning_args.use_swanlab: | |
callbacks.append(get_swanlab_callback(finetuning_args)) | |
if finetuning_args.early_stopping_steps is not None: | |
callbacks.append(EarlyStoppingCallback(early_stopping_patience=finetuning_args.early_stopping_steps)) | |
callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) # add to last | |
if finetuning_args.stage == "pt": | |
run_pt(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "sft": | |
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) | |
elif finetuning_args.stage == "rm": | |
run_rm(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "ppo": | |
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) | |
elif finetuning_args.stage == "dpo": | |
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "kto": | |
run_kto(model_args, data_args, training_args, finetuning_args, callbacks) | |
else: | |
raise ValueError(f"Unknown task: {finetuning_args.stage}.") | |
if is_ray_available() and ray.is_initialized(): | |
return # if ray is intialized it will destroy the process group on return | |
try: | |
if dist.is_initialized(): | |
dist.destroy_process_group() | |
except Exception as e: | |
logger.warning(f"Failed to destroy process group: {e}.") | |
def run_exp(args: Optional[dict[str, Any]] = None, callbacks: Optional[list["TrainerCallback"]] = None) -> None: | |
args = read_args(args) | |
if "-h" in args or "--help" in args: | |
get_train_args(args) | |
ray_args = get_ray_args(args) | |
callbacks = callbacks or [] | |
if ray_args.use_ray: | |
callbacks.append(RayTrainReportCallback()) | |
trainer = get_ray_trainer( | |
training_function=_training_function, | |
train_loop_config={"args": args, "callbacks": callbacks}, | |
ray_args=ray_args, | |
) | |
trainer.fit() | |
else: | |
_training_function(config={"args": args, "callbacks": callbacks}) | |
def export_model(args: Optional[dict[str, Any]] = None) -> None: | |
model_args, data_args, finetuning_args, _ = get_infer_args(args) | |
if model_args.export_dir is None: | |
raise ValueError("Please specify `export_dir` to save model.") | |
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None: | |
raise ValueError("Please merge adapters before quantizing the model.") | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
processor = tokenizer_module["processor"] | |
template = get_template_and_fix_tokenizer(tokenizer, data_args) | |
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab | |
if getattr(model, "quantization_method", None) is not None and model_args.adapter_name_or_path is not None: | |
raise ValueError("Cannot merge adapters to a quantized model.") | |
if not isinstance(model, PreTrainedModel): | |
raise ValueError("The model is not a `PreTrainedModel`, export aborted.") | |
if getattr(model, "quantization_method", None) is not None: # quantized model adopts float16 type | |
setattr(model.config, "torch_dtype", torch.float16) | |
else: | |
if model_args.infer_dtype == "auto": | |
output_dtype = getattr(model.config, "torch_dtype", torch.float32) | |
if output_dtype == torch.float32: # if infer_dtype is auto, try using half precision first | |
output_dtype = infer_optim_dtype(torch.bfloat16) | |
else: | |
output_dtype = getattr(torch, model_args.infer_dtype) | |
setattr(model.config, "torch_dtype", output_dtype) | |
model = model.to(output_dtype) | |
logger.info_rank0(f"Convert model dtype to: {output_dtype}.") | |
model.save_pretrained( | |
save_directory=model_args.export_dir, | |
max_shard_size=f"{model_args.export_size}GB", | |
safe_serialization=(not model_args.export_legacy_format), | |
) | |
if model_args.export_hub_model_id is not None: | |
model.push_to_hub( | |
model_args.export_hub_model_id, | |
token=model_args.hf_hub_token, | |
max_shard_size=f"{model_args.export_size}GB", | |
safe_serialization=(not model_args.export_legacy_format), | |
) | |
if finetuning_args.stage == "rm": | |
if model_args.adapter_name_or_path is not None: | |
vhead_path = model_args.adapter_name_or_path[-1] | |
else: | |
vhead_path = model_args.model_name_or_path | |
if os.path.exists(os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME)): | |
shutil.copy( | |
os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME), | |
os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME), | |
) | |
logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.") | |
elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)): | |
shutil.copy( | |
os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME), | |
os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME), | |
) | |
logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.") | |
try: | |
tokenizer.padding_side = "left" # restore padding side | |
tokenizer.init_kwargs["padding_side"] = "left" | |
tokenizer.save_pretrained(model_args.export_dir) | |
if model_args.export_hub_model_id is not None: | |
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) | |
if processor is not None: | |
processor.save_pretrained(model_args.export_dir) | |
if model_args.export_hub_model_id is not None: | |
processor.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) | |
except Exception as e: | |
logger.warning_rank0(f"Cannot save tokenizer, please copy the files manually: {e}.") | |
ollama_modelfile = os.path.join(model_args.export_dir, "Modelfile") | |
with open(ollama_modelfile, "w", encoding="utf-8") as f: | |
f.write(template.get_ollama_modelfile(tokenizer)) | |
logger.info_rank0(f"Ollama modelfile saved in {ollama_modelfile}") | |