Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from types import MethodType | |
from typing import TYPE_CHECKING, Optional | |
import torch | |
from transformers import Trainer | |
from typing_extensions import override | |
from ...extras.packages import is_transformers_version_greater_than | |
from ..callbacks import SaveProcessorCallback | |
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler | |
if TYPE_CHECKING: | |
from transformers import ProcessorMixin | |
from ...hparams import FinetuningArguments | |
class CustomTrainer(Trainer): | |
r"""Inherit Trainer for custom optimizer.""" | |
def __init__( | |
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs | |
) -> None: | |
if is_transformers_version_greater_than("4.46"): | |
kwargs["processing_class"] = kwargs.pop("tokenizer") | |
super().__init__(**kwargs) | |
if processor is not None: | |
# avoid wrong loss under gradient accumulation | |
# https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112 | |
self.model_accepts_loss_kwargs = False | |
self.finetuning_args = finetuning_args | |
if processor is not None: | |
self.add_callback(SaveProcessorCallback(processor)) | |
if finetuning_args.use_badam: | |
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore | |
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) | |
self.add_callback(BAdamCallback) | |
def create_optimizer(self) -> "torch.optim.Optimizer": | |
if self.optimizer is None: | |
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) | |
return super().create_optimizer() | |
def create_scheduler( | |
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None | |
) -> "torch.optim.lr_scheduler.LRScheduler": | |
create_custom_scheduler(self.args, num_training_steps, optimizer) | |
return super().create_scheduler(num_training_steps, optimizer) | |
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: | |
if self.finetuning_args.disable_shuffling: | |
return torch.utils.data.SequentialSampler(self.train_dataset) | |
return super()._get_train_sampler() | |
def compute_loss(self, model, inputs, *args, **kwargs): | |
return super().compute_loss(model, inputs, *args, **kwargs) | |