Spaces:
Running
Running
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's TRL library. | |
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from collections import defaultdict | |
from contextlib import nullcontext | |
from types import MethodType | |
from typing import TYPE_CHECKING, Literal, Optional, Union | |
import torch | |
import torch.nn.functional as F | |
from transformers import Trainer | |
from trl import DPOTrainer | |
from trl.trainer import disable_dropout_in_model | |
from typing_extensions import override | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.packages import is_transformers_version_greater_than | |
from ..callbacks import SaveProcessorCallback | |
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, ProcessorMixin | |
from ...hparams import FinetuningArguments | |
class CustomDPOTrainer(DPOTrainer): | |
def __init__( | |
self, | |
model: Union["PreTrainedModel", torch.nn.Module], | |
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]], | |
finetuning_args: "FinetuningArguments", | |
processor: Optional["ProcessorMixin"], | |
disable_dropout: bool = True, | |
**kwargs, | |
): | |
if is_transformers_version_greater_than("4.46"): | |
kwargs["processing_class"] = kwargs.pop("tokenizer") | |
if disable_dropout: | |
disable_dropout_in_model(model) | |
if ref_model is not None: | |
disable_dropout_in_model(ref_model) | |
self.finetuning_args = finetuning_args | |
self.f_divergence_type = "reverse_kl" | |
self.reference_free = False | |
self.use_dpo_data_collator = True # hack to avoid warning | |
self.generate_during_eval = False # disable at evaluation | |
self.label_pad_token_id = IGNORE_INDEX | |
self.padding_value = 0 | |
self.is_encoder_decoder = model.config.is_encoder_decoder | |
self.precompute_ref_log_probs = False | |
self._precomputed_train_ref_log_probs = False | |
self._precomputed_eval_ref_log_probs = False | |
self._peft_has_been_casted_to_bf16 = False | |
self.ref_model = ref_model | |
self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
# dpo hyperparams | |
self.beta = finetuning_args.pref_beta | |
self.loss_type = finetuning_args.pref_loss | |
self.ftx_gamma = finetuning_args.pref_ftx | |
self.label_smoothing = finetuning_args.dpo_label_smoothing | |
self.simpo_gamma = finetuning_args.simpo_gamma | |
Trainer.__init__(self, model=model, **kwargs) | |
self.model_accepts_loss_kwargs = False # overwrite trainer's default behavior | |
if not hasattr(self, "accelerator"): | |
raise AttributeError("Please update `transformers`.") | |
warnings.simplefilter("ignore") # remove gc warnings on ref model | |
if ref_model is not None: | |
if self.is_deepspeed_enabled: | |
if not ( | |
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) | |
): # quantized models are already set on the correct device | |
self.ref_model = self._prepare_deepspeed(self.ref_model) | |
else: | |
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
self.ref_model.eval() | |
if processor is not None: | |
self.add_callback(SaveProcessorCallback(processor)) | |
if finetuning_args.use_badam: | |
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore | |
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) | |
self.add_callback(BAdamCallback) | |
def create_optimizer(self) -> "torch.optim.Optimizer": | |
if self.optimizer is None: | |
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) | |
return super().create_optimizer() | |
def create_scheduler( | |
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None | |
) -> "torch.optim.lr_scheduler.LRScheduler": | |
create_custom_scheduler(self.args, num_training_steps, optimizer) | |
return super().create_scheduler(num_training_steps, optimizer) | |
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: | |
if self.finetuning_args.disable_shuffling: | |
return torch.utils.data.SequentialSampler(self.train_dataset) | |
return super()._get_train_sampler() | |
def get_batch_samples(self, *args, **kwargs): | |
r"""Replace the method of DPO Trainer with the one of the standard Trainer.""" | |
return Trainer.get_batch_samples(self, *args, **kwargs) | |
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": | |
r"""Compute ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.""" | |
log_odds = (chosen_logps - rejected_logps) - ( | |
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps)) | |
) | |
sft_loss = -chosen_logps | |
odds_ratio_loss = -F.logsigmoid(log_odds) | |
orpo_loss = sft_loss + self.beta * odds_ratio_loss | |
return orpo_loss | |
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": | |
r"""Compute SimPO loss for batched log probabilities of the policy model.""" | |
pi_logratios = chosen_logps - rejected_logps | |
gamma_logratios = self.simpo_gamma / self.beta | |
logits = pi_logratios - gamma_logratios | |
simpo_loss = -F.logsigmoid(self.beta * logits) | |
return simpo_loss | |
def compute_preference_loss( | |
self, | |
policy_chosen_logps: "torch.Tensor", | |
policy_rejected_logps: "torch.Tensor", | |
reference_chosen_logps: Optional["torch.Tensor"], | |
reference_rejected_logps: Optional["torch.Tensor"], | |
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: | |
r"""Compute loss for preference learning.""" | |
if not self.finetuning_args.use_ref_model: | |
if self.loss_type == "orpo": | |
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps) | |
elif self.loss_type == "simpo": | |
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps) | |
else: | |
raise NotImplementedError(f"Unknown loss type: {self.loss_type}.") | |
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach() | |
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach() | |
else: | |
losses, chosen_rewards, rejected_rewards = self.dpo_loss( | |
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps | |
) | |
return losses, chosen_rewards, rejected_rewards | |
def concatenated_forward( | |
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"] | |
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: | |
r"""Compute the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO. | |
Otherwise the average log probabilities. | |
""" | |
if self.finetuning_args.use_ref_model: | |
batch = nested_detach(batch, clone=True) # avoid error | |
all_logits: torch.Tensor = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32) | |
all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"]) | |
if self.loss_type in ["ipo", "orpo", "simpo"]: | |
all_logps = all_logps / valid_length | |
batch_size = batch["input_ids"].size(0) // 2 | |
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) | |
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) | |
chosen_length, _ = valid_length.split(batch_size, dim=0) | |
if self.loss_type in ["ipo", "orpo", "simpo"]: | |
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps | |
else: | |
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length | |
def compute_reference_log_probs( | |
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"] | |
) -> tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]: | |
r"""Compute log probabilities of the reference model.""" | |
if not self.finetuning_args.use_ref_model: | |
return None, None | |
if self.ref_model is None: | |
ref_model = model | |
ref_context = self.accelerator.unwrap_model(model).disable_adapter() | |
else: | |
ref_model = self.ref_model | |
ref_context = nullcontext() | |
with torch.no_grad(), ref_context: | |
reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch) | |
return reference_chosen_logps, reference_rejected_logps | |
def get_batch_loss_metrics( | |
self, | |
model: "PreTrainedModel", | |
batch: dict[str, "torch.Tensor"], | |
train_eval: Literal["train", "eval"] = "train", | |
) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]: | |
r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test.""" | |
metrics = {} | |
( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_chosen_logits, | |
policy_rejected_logits, | |
policy_chosen_logps_avg, | |
) = self.concatenated_forward(model, batch) | |
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch) | |
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
reference_chosen_logps, | |
reference_rejected_logps, | |
) | |
sft_loss = -policy_chosen_logps_avg | |
if self.ftx_gamma > 1e-6: | |
losses += self.ftx_gamma * sft_loss | |
prefix = "eval_" if train_eval == "eval" else "" | |
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().item() | |
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().item() | |
metrics[f"{prefix}rewards/accuracies"] = (chosen_rewards > rejected_rewards).float().mean().item() | |
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().item() | |
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.mean().item() | |
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.mean().item() | |
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.mean().item() | |
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.mean().item() | |
if self.loss_type == "orpo": | |
metrics[f"{prefix}sft_loss"] = sft_loss.mean().item() | |
metrics[f"{prefix}odds_ratio_loss"] = ((losses - sft_loss) / self.beta).mean().item() | |
return losses.mean(), metrics | |
def compute_loss( | |
self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs | |
) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]: | |
r"""Subclass and override to accept extra kwargs.""" | |
return super().compute_loss(model, inputs, return_outputs) | |
def log(self, logs: dict[str, float], *args, **kwargs) -> None: | |
r"""Log `logs` on the various objects watching training, including stored metrics.""" | |
# logs either has "loss" or "eval_loss" | |
train_eval = "train" if "loss" in logs else "eval" | |
# Add averaged stored metrics to logs | |
key_list, metric_list = [], [] | |
for key, metrics in self._stored_metrics[train_eval].items(): | |
key_list.append(key) | |
metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).mean().item()) | |
del self._stored_metrics[train_eval] | |
if len(metric_list) < 10: # pad to for all reduce | |
for i in range(10 - len(metric_list)): | |
key_list.append(f"dummy_{i}") | |
metric_list.append(0.0) | |
metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device) | |
metric_list = self.accelerator.reduce(metric_list, "mean").tolist() | |
for key, metric in zip(key_list, metric_list): # add remaining items | |
if not key.startswith("dummy_"): | |
logs[key] = metric | |
return Trainer.log(self, logs, *args, **kwargs) | |