ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Union
import torch
import torch.nn.functional as F
from transformers import Trainer
from trl import DPOTrainer
from trl.trainer import disable_dropout_in_model
from typing_extensions import override
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
if TYPE_CHECKING:
from transformers import PreTrainedModel, ProcessorMixin
from ...hparams import FinetuningArguments
class CustomDPOTrainer(DPOTrainer):
def __init__(
self,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
finetuning_args: "FinetuningArguments",
processor: Optional["ProcessorMixin"],
disable_dropout: bool = True,
**kwargs,
):
if is_transformers_version_greater_than("4.46"):
kwargs["processing_class"] = kwargs.pop("tokenizer")
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.finetuning_args = finetuning_args
self.f_divergence_type = "reverse_kl"
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self._peft_has_been_casted_to_bf16 = False
self.ref_model = ref_model
self._stored_metrics = defaultdict(lambda: defaultdict(list))
# dpo hyperparams
self.beta = finetuning_args.pref_beta
self.loss_type = finetuning_args.pref_loss
self.ftx_gamma = finetuning_args.pref_ftx
self.label_smoothing = finetuning_args.dpo_label_smoothing
self.simpo_gamma = finetuning_args.simpo_gamma
Trainer.__init__(self, model=model, **kwargs)
self.model_accepts_loss_kwargs = False # overwrite trainer's default behavior
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
warnings.simplefilter("ignore") # remove gc warnings on ref model
if ref_model is not None:
if self.is_deepspeed_enabled:
if not (
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
self.ref_model.eval()
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
@override
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
@override
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
if self.finetuning_args.disable_shuffling:
return torch.utils.data.SequentialSampler(self.train_dataset)
return super()._get_train_sampler()
@override
def get_batch_samples(self, *args, **kwargs):
r"""Replace the method of DPO Trainer with the one of the standard Trainer."""
return Trainer.get_batch_samples(self, *args, **kwargs)
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
r"""Compute ORPO's odds ratio (OR) loss for batched log probabilities of the policy model."""
log_odds = (chosen_logps - rejected_logps) - (
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
)
sft_loss = -chosen_logps
odds_ratio_loss = -F.logsigmoid(log_odds)
orpo_loss = sft_loss + self.beta * odds_ratio_loss
return orpo_loss
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
r"""Compute SimPO loss for batched log probabilities of the policy model."""
pi_logratios = chosen_logps - rejected_logps
gamma_logratios = self.simpo_gamma / self.beta
logits = pi_logratios - gamma_logratios
simpo_loss = -F.logsigmoid(self.beta * logits)
return simpo_loss
def compute_preference_loss(
self,
policy_chosen_logps: "torch.Tensor",
policy_rejected_logps: "torch.Tensor",
reference_chosen_logps: Optional["torch.Tensor"],
reference_rejected_logps: Optional["torch.Tensor"],
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""Compute loss for preference learning."""
if not self.finetuning_args.use_ref_model:
if self.loss_type == "orpo":
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
elif self.loss_type == "simpo":
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
else:
raise NotImplementedError(f"Unknown loss type: {self.loss_type}.")
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
else:
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
return losses, chosen_rewards, rejected_rewards
@override
def concatenated_forward(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""Compute the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.
Otherwise the average log probabilities.
"""
if self.finetuning_args.use_ref_model:
batch = nested_detach(batch, clone=True) # avoid error
all_logits: torch.Tensor = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"])
if self.loss_type in ["ipo", "orpo", "simpo"]:
all_logps = all_logps / valid_length
batch_size = batch["input_ids"].size(0) // 2
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
chosen_length, _ = valid_length.split(batch_size, dim=0)
if self.loss_type in ["ipo", "orpo", "simpo"]:
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps
else:
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length
@override
def compute_reference_log_probs(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
) -> tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
r"""Compute log probabilities of the reference model."""
if not self.finetuning_args.use_ref_model:
return None, None
if self.ref_model is None:
ref_model = model
ref_context = self.accelerator.unwrap_model(model).disable_adapter()
else:
ref_model = self.ref_model
ref_context = nullcontext()
with torch.no_grad(), ref_context:
reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch)
return reference_chosen_logps, reference_rejected_logps
@override
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: dict[str, "torch.Tensor"],
train_eval: Literal["train", "eval"] = "train",
) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]:
r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
policy_chosen_logps_avg,
) = self.concatenated_forward(model, batch)
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
)
sft_loss = -policy_chosen_logps_avg
if self.ftx_gamma > 1e-6:
losses += self.ftx_gamma * sft_loss
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().item()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().item()
metrics[f"{prefix}rewards/accuracies"] = (chosen_rewards > rejected_rewards).float().mean().item()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().item()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.mean().item()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.mean().item()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.mean().item()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.mean().item()
if self.loss_type == "orpo":
metrics[f"{prefix}sft_loss"] = sft_loss.mean().item()
metrics[f"{prefix}odds_ratio_loss"] = ((losses - sft_loss) / self.beta).mean().item()
return losses.mean(), metrics
@override
def compute_loss(
self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
r"""Subclass and override to accept extra kwargs."""
return super().compute_loss(model, inputs, return_outputs)
@override
def log(self, logs: dict[str, float], *args, **kwargs) -> None:
r"""Log `logs` on the various objects watching training, including stored metrics."""
# logs either has "loss" or "eval_loss"
train_eval = "train" if "loss" in logs else "eval"
# Add averaged stored metrics to logs
key_list, metric_list = [], []
for key, metrics in self._stored_metrics[train_eval].items():
key_list.append(key)
metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).mean().item())
del self._stored_metrics[train_eval]
if len(metric_list) < 10: # pad to for all reduce
for i in range(10 - len(metric_list)):
key_list.append(f"dummy_{i}")
metric_list.append(0.0)
metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device)
metric_list = self.accelerator.reduce(metric_list, "mean").tolist()
for key, metric in zip(key_list, metric_list): # add remaining items
if not key.startswith("dummy_"):
logs[key] = metric
return Trainer.log(self, logs, *args, **kwargs)