Spaces:
Running
Running
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's Transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Optional | |
import torch | |
import transformers | |
import transformers.models | |
from transformers.activations import ACT2FN | |
from ...extras import logging | |
if TYPE_CHECKING: | |
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel | |
from ...hparams import FinetuningArguments, ModelArguments | |
logger = logging.get_logger(__name__) | |
transformers_logger = transformers.utils.logging.get_logger(__name__) | |
class CompositeModel: | |
model_type: str | |
projector_key: str | |
vision_model_keys: list[str] | |
language_model_keys: list[str] | |
lora_conflict_keys: list[str] | |
def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module": | |
for key in self.projector_key.split("."): | |
module = getattr(module, key) | |
return module | |
COMPOSITE_MODELS: dict[str, "CompositeModel"] = {} | |
def _register_composite_model( | |
model_type: str, | |
projector_key: Optional[str] = None, | |
vision_model_keys: Optional[list[str]] = None, | |
language_model_keys: Optional[list[str]] = None, | |
lora_conflict_keys: Optional[list[str]] = None, | |
): | |
r"""Register a new composite model. | |
Args: | |
model_type: model type | |
projector_key: multi_modal_projector | |
vision_model_keys: vision_tower | |
language_model_keys: language_model | |
lora_conflict_keys: None | |
""" | |
COMPOSITE_MODELS[model_type] = CompositeModel( | |
model_type=model_type, | |
projector_key=projector_key or "multi_modal_projector", | |
vision_model_keys=vision_model_keys or ["vision_tower"], | |
language_model_keys=language_model_keys or ["language_model"], | |
lora_conflict_keys=lora_conflict_keys or [], | |
) | |
class LlavaMultiModalProjectorForYiVL(torch.nn.Module): | |
def __init__(self, config: "LlavaConfig") -> None: | |
super().__init__() | |
self.config = config | |
if config is None: | |
return | |
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) | |
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) | |
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) | |
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) | |
self.act = ACT2FN[config.projector_hidden_act] | |
def forward(self, image_features: "torch.Tensor") -> "torch.Tensor": | |
hidden_states = self.linear_1(image_features) | |
hidden_states = self.linear_2(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.linear_3(hidden_states) | |
hidden_states = self.linear_4(hidden_states) | |
if hidden_states.dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.linear_1.weight.dtype | |
transformers_logger.warning_once("The hidden states seems to be silently casted in float32.") | |
hidden_states = hidden_states.to(target_dtype) | |
return hidden_states | |
class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL): | |
def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None: | |
super().__init__(config=None) | |
self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True) | |
self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True) | |
self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True) | |
self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True) | |
self.act = ACT2FN[projector_hidden_act] | |
def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None: | |
r"""Cast projector output to half precision for fine-tuning quantized VLMs.""" | |
def _mm_projector_forward_post_hook( | |
module: "torch.nn.Module", args: tuple["torch.Tensor"], output: "torch.Tensor" | |
) -> "torch.Tensor": | |
return output.to(model_args.compute_dtype) | |
if getattr(model, "quantization_method", None): | |
model_type = getattr(model.config, "model_type", None) | |
if model_type in COMPOSITE_MODELS: | |
mm_projector = COMPOSITE_MODELS[model_type].get_projector(model) | |
else: | |
return | |
logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.") | |
mm_projector.register_forward_hook(_mm_projector_forward_post_hook) | |
def configure_visual_model(config: "PretrainedConfig") -> None: | |
r"""Patch VLMs before loading them.""" | |
if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None): | |
# required for ds zero3 and valuehead models | |
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) | |
if getattr(config, "is_yi_vl_derived_model", None): | |
logger.info_rank0("Detected Yi-VL model, applying projector patch.") | |
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL | |
def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> set[str]: | |
r"""Freeze vision tower and language model for VLM full/freeze tuning.""" | |
model_type = getattr(config, "model_type", None) | |
forbidden_modules = set() | |
if model_type in COMPOSITE_MODELS: | |
if finetuning_args.freeze_vision_tower: | |
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys | |
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.") | |
forbidden_modules.update(vision_model_keys) | |
if finetuning_args.freeze_multi_modal_projector: | |
projector_key = COMPOSITE_MODELS[model_type].projector_key | |
logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.") | |
forbidden_modules.add(projector_key) | |
if finetuning_args.freeze_language_model: | |
language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys | |
logger.info_rank0(f"Set language model not trainable: {language_model_keys}.") | |
forbidden_modules.update(language_model_keys) | |
return forbidden_modules | |
def patch_target_modules( | |
model: "PreTrainedModel", finetuning_args: "FinetuningArguments", target_modules: list[str] | |
) -> list[str]: | |
r"""Freeze vision tower for VLM LoRA tuning.""" | |
model_type = getattr(model.config, "model_type", None) | |
if model_type in COMPOSITE_MODELS: | |
forbidden_modules = get_forbidden_modules(model.config, finetuning_args) | |
forbidden_modules.update(COMPOSITE_MODELS[model_type].lora_conflict_keys) | |
module_names = [] | |
for name, _ in model.named_modules(): | |
if any(target_module in name for target_module in target_modules) and not any( | |
forbidden_module in name for forbidden_module in forbidden_modules | |
): | |
module_names.append(name) | |
return module_names | |
else: | |
return target_modules | |
_register_composite_model( | |
model_type="internvl", | |
) | |
_register_composite_model( | |
model_type="gemma3", | |
) | |
_register_composite_model( | |
model_type="llama4", | |
vision_model_keys=["vision_model"], | |
) | |
_register_composite_model( | |
model_type="llava", | |
) | |
_register_composite_model( | |
model_type="llava_next", | |
) | |
_register_composite_model( | |
model_type="llava_next_video", | |
) | |
_register_composite_model( | |
model_type="minicpmv", | |
projector_key="resampler", | |
vision_model_keys=["vpm"], | |
language_model_keys=["llm"], | |
) | |
_register_composite_model( | |
model_type="minicpmo", | |
projector_key="resampler", | |
vision_model_keys=["vpm", "apm", "audio_avg_pooler", "audio_projection_layer", "tts"], | |
language_model_keys=["llm"], | |
lora_conflict_keys=["audio_projection_layer"], | |
) | |
_register_composite_model( | |
model_type="paligemma", | |
) | |
_register_composite_model( | |
model_type="video_llava", | |
) | |
_register_composite_model( | |
model_type="mllama", | |
vision_model_keys=["vision_model"], | |
) | |
_register_composite_model( | |
model_type="qwen2_audio", | |
vision_model_keys=["audio_tower"], | |
) | |
_register_composite_model( | |
model_type="qwen2_5_omni_thinker", | |
projector_key="visual.merger", | |
vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"], | |
language_model_keys=["model", "lm_head"], | |
lora_conflict_keys=["patch_embed"], | |
) | |
_register_composite_model( | |
model_type="qwen2_vl", | |
projector_key="visual.merger", | |
vision_model_keys=["visual.patch_embed", "visual.blocks"], | |
language_model_keys=["model", "lm_head"], | |
lora_conflict_keys=["patch_embed"], | |
) | |
_register_composite_model( | |
model_type="qwen2_5_vl", | |
projector_key="visual.merger", | |
vision_model_keys=["visual.patch_embed", "visual.blocks"], | |
language_model_keys=["model", "lm_head"], | |
lora_conflict_keys=["patch_embed"], | |
) | |