Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING | |
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available | |
from ...extras import logging | |
from ...extras.constants import AttentionFunction | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig | |
from ...hparams import ModelArguments | |
logger = logging.get_logger(__name__) | |
def configure_attn_implementation( | |
config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool | |
) -> None: | |
if getattr(config, "model_type", None) == "gemma2" and is_trainable: | |
if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2: | |
if is_flash_attn_2_available(): | |
if model_args.flash_attn != AttentionFunction.FA2: | |
logger.warning_rank0("Gemma 2 should use flash attention 2, change `flash_attn` to fa2.") | |
model_args.flash_attn = AttentionFunction.FA2 | |
else: | |
logger.warning_rank0("FlashAttention-2 is not installed, use eager attention.") | |
model_args.flash_attn = AttentionFunction.DISABLED | |
elif model_args.flash_attn == AttentionFunction.SDPA: | |
logger.warning_rank0( | |
"Gemma-2 should use soft-capping attention, while the SDPA attention does not support it." | |
) | |
if model_args.flash_attn == AttentionFunction.AUTO: | |
return | |
elif model_args.flash_attn == AttentionFunction.DISABLED: | |
requested_attn_implementation = "eager" | |
elif model_args.flash_attn == AttentionFunction.SDPA: | |
if not is_torch_sdpa_available(): | |
logger.warning_rank0("torch>=2.1.1 is required for SDPA attention.") | |
return | |
requested_attn_implementation = "sdpa" | |
elif model_args.flash_attn == AttentionFunction.FA2: | |
if not is_flash_attn_2_available(): | |
logger.warning_rank0("FlashAttention-2 is not installed.") | |
return | |
requested_attn_implementation = "flash_attention_2" | |
else: | |
raise NotImplementedError(f"Unknown attention type: {model_args.flash_attn}") | |
if getattr(config, "model_type", None) == "internlm2": # special case for custom models | |
setattr(config, "attn_implementation", requested_attn_implementation) | |
elif getattr(config, "model_type", None) == "kimi_vl": | |
setattr(config.vision_config, "_attn_implementation", requested_attn_implementation) | |
setattr(config.text_config, "_attn_implementation", requested_attn_implementation) | |
else: | |
setattr(config, "_attn_implementation", requested_attn_implementation) | |
def print_attn_implementation(config: "PretrainedConfig") -> None: | |
if getattr(config, "model_type", None) == "internlm2": # special case for custom models | |
attn_implementation = getattr(config, "attn_implementation", None) | |
else: | |
attn_implementation = getattr(config, "_attn_implementation", None) | |
if attn_implementation == "flash_attention_2": | |
logger.info_rank0("Using FlashAttention-2 for faster training and inference.") | |
elif attn_implementation == "sdpa": | |
logger.info_rank0("Using torch SDPA for faster training and inference.") | |
else: | |
logger.info_rank0("Using vanilla attention implementation.") | |