Spaces:
Running
Running
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
from typing import Any, Optional, Union | |
import torch | |
import transformers | |
import yaml | |
from omegaconf import OmegaConf | |
from transformers import HfArgumentParser | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.training_args import ParallelMode | |
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available | |
from ..extras import logging | |
from ..extras.constants import CHECKPOINT_NAMES, EngineName | |
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled | |
from .data_args import DataArguments | |
from .evaluation_args import EvaluationArguments | |
from .finetuning_args import FinetuningArguments | |
from .generating_args import GeneratingArguments | |
from .model_args import ModelArguments | |
from .training_args import RayArguments, TrainingArguments | |
logger = logging.get_logger(__name__) | |
check_dependencies() | |
_TRAIN_ARGS = [ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments] | |
_TRAIN_CLS = tuple[ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments] | |
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] | |
_INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] | |
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] | |
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] | |
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]: | |
r"""Get arguments from the command line or a config file.""" | |
if args is not None: | |
return args | |
if sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml"): | |
override_config = OmegaConf.from_cli(sys.argv[2:]) | |
dict_config = yaml.safe_load(Path(sys.argv[1]).absolute().read_text()) | |
return OmegaConf.to_container(OmegaConf.merge(dict_config, override_config)) | |
elif sys.argv[1].endswith(".json"): | |
override_config = OmegaConf.from_cli(sys.argv[2:]) | |
dict_config = json.loads(Path(sys.argv[1]).absolute().read_text()) | |
return OmegaConf.to_container(OmegaConf.merge(dict_config, override_config)) | |
else: | |
return sys.argv[1:] | |
def _parse_args( | |
parser: "HfArgumentParser", args: Optional[Union[dict[str, Any], list[str]]] = None, allow_extra_keys: bool = False | |
) -> tuple[Any]: | |
args = read_args(args) | |
if isinstance(args, dict): | |
return parser.parse_dict(args, allow_extra_keys=allow_extra_keys) | |
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args, return_remaining_strings=True) | |
if unknown_args and not allow_extra_keys: | |
print(parser.format_help()) | |
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}") | |
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}") | |
return tuple(parsed_args) | |
def _set_transformers_logging() -> None: | |
if os.getenv("LLAMAFACTORY_VERBOSITY", "INFO") in ["DEBUG", "INFO"]: | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
def _set_env_vars() -> None: | |
if is_torch_npu_available(): | |
# avoid JIT compile on NPU devices, see https://zhuanlan.zhihu.com/p/660875458 | |
torch.npu.set_compile_mode(jit_compile=is_env_enabled("NPU_JIT_COMPILE")) | |
# avoid use fork method on NPU devices, see https://github.com/hiyouga/LLaMA-Factory/issues/7447 | |
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" | |
def _verify_model_args( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
finetuning_args: "FinetuningArguments", | |
) -> None: | |
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora": | |
raise ValueError("Adapter is only valid for the LoRA method.") | |
if model_args.quantization_bit is not None: | |
if finetuning_args.finetuning_type != "lora": | |
raise ValueError("Quantization is only compatible with the LoRA method.") | |
if finetuning_args.pissa_init: | |
raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.") | |
if model_args.resize_vocab: | |
raise ValueError("Cannot resize embedding layers of a quantized model.") | |
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter: | |
raise ValueError("Cannot create new adapter upon a quantized model.") | |
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: | |
raise ValueError("Quantized model only accepts a single adapter. Merge them first.") | |
if data_args.template == "yi" and model_args.use_fast_tokenizer: | |
logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.") | |
model_args.use_fast_tokenizer = False | |
def _check_extra_dependencies( | |
model_args: "ModelArguments", | |
finetuning_args: "FinetuningArguments", | |
training_args: Optional["TrainingArguments"] = None, | |
) -> None: | |
if model_args.use_unsloth: | |
check_version("unsloth", mandatory=True) | |
if model_args.enable_liger_kernel: | |
check_version("liger-kernel", mandatory=True) | |
if model_args.mixture_of_depths is not None: | |
check_version("mixture-of-depth>=1.1.6", mandatory=True) | |
if model_args.infer_backend == EngineName.VLLM: | |
check_version("vllm>=0.4.3,<=0.8.5") | |
check_version("vllm", mandatory=True) | |
elif model_args.infer_backend == EngineName.SGLANG: | |
check_version("sglang>=0.4.5") | |
check_version("sglang", mandatory=True) | |
if finetuning_args.use_galore: | |
check_version("galore_torch", mandatory=True) | |
if finetuning_args.use_apollo: | |
check_version("apollo_torch", mandatory=True) | |
if finetuning_args.use_badam: | |
check_version("badam>=1.2.1", mandatory=True) | |
if finetuning_args.use_adam_mini: | |
check_version("adam-mini", mandatory=True) | |
if finetuning_args.plot_loss: | |
check_version("matplotlib", mandatory=True) | |
if training_args is not None and training_args.predict_with_generate: | |
check_version("jieba", mandatory=True) | |
check_version("nltk", mandatory=True) | |
check_version("rouge_chinese", mandatory=True) | |
def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS: | |
parser = HfArgumentParser(_TRAIN_ARGS) | |
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS") | |
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys) | |
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS: | |
parser = HfArgumentParser(_INFER_ARGS) | |
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS") | |
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys) | |
def _parse_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS: | |
parser = HfArgumentParser(_EVAL_ARGS) | |
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS") | |
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys) | |
def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> RayArguments: | |
parser = HfArgumentParser(RayArguments) | |
(ray_args,) = _parse_args(parser, args, allow_extra_keys=True) | |
return ray_args | |
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS: | |
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args) | |
# Setup logging | |
if training_args.should_log: | |
_set_transformers_logging() | |
# Check arguments | |
if finetuning_args.stage != "sft": | |
if training_args.predict_with_generate: | |
raise ValueError("`predict_with_generate` cannot be set as True except SFT.") | |
if data_args.neat_packing: | |
raise ValueError("`neat_packing` cannot be set as True except SFT.") | |
if data_args.train_on_prompt or data_args.mask_history: | |
raise ValueError("`train_on_prompt` or `mask_history` cannot be set as True except SFT.") | |
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate: | |
raise ValueError("Please enable `predict_with_generate` to save model predictions.") | |
if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end: | |
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.") | |
if finetuning_args.stage == "ppo": | |
if not training_args.do_train: | |
raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.") | |
if model_args.shift_attn: | |
raise ValueError("PPO training is incompatible with S^2-Attn.") | |
if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth: | |
raise ValueError("Unsloth does not support lora reward model.") | |
if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]: | |
raise ValueError("PPO only accepts wandb or tensorboard logger.") | |
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED: | |
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.") | |
if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.") | |
if training_args.max_steps == -1 and data_args.streaming: | |
raise ValueError("Please specify `max_steps` in streaming mode.") | |
if training_args.do_train and data_args.dataset is None: | |
raise ValueError("Please specify dataset for training.") | |
if (training_args.do_eval or training_args.do_predict) and ( | |
data_args.eval_dataset is None and data_args.val_size < 1e-6 | |
): | |
raise ValueError("Please specify dataset for evaluation.") | |
if training_args.predict_with_generate: | |
if is_deepspeed_zero3_enabled(): | |
raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.") | |
if data_args.eval_dataset is None: | |
raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.") | |
if finetuning_args.compute_accuracy: | |
raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.") | |
if training_args.do_train and model_args.quantization_device_map == "auto": | |
raise ValueError("Cannot use device map for quantized models in training.") | |
if finetuning_args.pissa_init and is_deepspeed_zero3_enabled(): | |
raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA in DeepSpeed ZeRO-3.") | |
if finetuning_args.pure_bf16: | |
if not (is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())): | |
raise ValueError("This device does not support `pure_bf16`.") | |
if is_deepspeed_zero3_enabled(): | |
raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.") | |
if training_args.parallel_mode == ParallelMode.DISTRIBUTED: | |
if finetuning_args.use_galore and finetuning_args.galore_layerwise: | |
raise ValueError("Distributed training does not support layer-wise GaLore.") | |
if finetuning_args.use_apollo and finetuning_args.apollo_layerwise: | |
raise ValueError("Distributed training does not support layer-wise APOLLO.") | |
if finetuning_args.use_badam: | |
if finetuning_args.badam_mode == "ratio": | |
raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.") | |
elif not is_deepspeed_zero3_enabled(): | |
raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.") | |
if training_args.deepspeed is not None and (finetuning_args.use_galore or finetuning_args.use_apollo): | |
raise ValueError("GaLore and APOLLO are incompatible with DeepSpeed yet.") | |
if model_args.infer_backend != EngineName.HF: | |
raise ValueError("vLLM/SGLang backend is only available for API, CLI and Web.") | |
if model_args.use_unsloth and is_deepspeed_zero3_enabled(): | |
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.") | |
_set_env_vars() | |
_verify_model_args(model_args, data_args, finetuning_args) | |
_check_extra_dependencies(model_args, finetuning_args, training_args) | |
if ( | |
training_args.do_train | |
and finetuning_args.finetuning_type == "lora" | |
and model_args.quantization_bit is None | |
and model_args.resize_vocab | |
and finetuning_args.additional_target is None | |
): | |
logger.warning_rank0( | |
"Remember to add embedding layers to `additional_target` to make the added tokens trainable." | |
) | |
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm): | |
logger.warning_rank0("We recommend enable `upcast_layernorm` in quantized training.") | |
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): | |
logger.warning_rank0("We recommend enable mixed precision training.") | |
if ( | |
training_args.do_train | |
and (finetuning_args.use_galore or finetuning_args.use_apollo) | |
and not finetuning_args.pure_bf16 | |
): | |
logger.warning_rank0( | |
"Using GaLore or APOLLO with mixed precision training may significantly increases GPU memory usage." | |
) | |
if (not training_args.do_train) and model_args.quantization_bit is not None: | |
logger.warning_rank0("Evaluating model in 4/8-bit mode may cause lower scores.") | |
if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None: | |
logger.warning_rank0("Specify `ref_model` for computing rewards at evaluation.") | |
# Post-process training arguments | |
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len | |
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams | |
training_args.remove_unused_columns = False # important for multimodal dataset | |
if finetuning_args.finetuning_type == "lora": | |
# https://github.com/huggingface/transformers/blob/v4.50.0/src/transformers/trainer.py#L782 | |
training_args.label_names = training_args.label_names or ["labels"] | |
if ( | |
training_args.parallel_mode == ParallelMode.DISTRIBUTED | |
and training_args.ddp_find_unused_parameters is None | |
and finetuning_args.finetuning_type == "lora" | |
): | |
logger.info_rank0("Set `ddp_find_unused_parameters` to False in DDP training since LoRA is enabled.") | |
training_args.ddp_find_unused_parameters = False | |
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]: | |
can_resume_from_checkpoint = False | |
if training_args.resume_from_checkpoint is not None: | |
logger.warning_rank0("Cannot resume from checkpoint in current stage.") | |
training_args.resume_from_checkpoint = None | |
else: | |
can_resume_from_checkpoint = True | |
if ( | |
training_args.resume_from_checkpoint is None | |
and training_args.do_train | |
and os.path.isdir(training_args.output_dir) | |
and not training_args.overwrite_output_dir | |
and can_resume_from_checkpoint | |
): | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and any( | |
os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES | |
): | |
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.") | |
if last_checkpoint is not None: | |
training_args.resume_from_checkpoint = last_checkpoint | |
logger.info_rank0(f"Resuming training from {training_args.resume_from_checkpoint}.") | |
logger.info_rank0("Change `output_dir` or use `overwrite_output_dir` to avoid.") | |
if ( | |
finetuning_args.stage in ["rm", "ppo"] | |
and finetuning_args.finetuning_type == "lora" | |
and training_args.resume_from_checkpoint is not None | |
): | |
logger.warning_rank0( | |
f"Add {training_args.resume_from_checkpoint} to `adapter_name_or_path` to resume training from checkpoint." | |
) | |
# Post-process model arguments | |
if training_args.bf16 or finetuning_args.pure_bf16: | |
model_args.compute_dtype = torch.bfloat16 | |
elif training_args.fp16: | |
model_args.compute_dtype = torch.float16 | |
model_args.device_map = {"": get_current_device()} | |
model_args.model_max_length = data_args.cutoff_len | |
model_args.block_diag_attn = data_args.neat_packing | |
data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt" | |
# Log on each process the small summary | |
logger.info( | |
f"Process rank: {training_args.process_index}, " | |
f"world size: {training_args.world_size}, device: {training_args.device}, " | |
f"distributed training: {training_args.parallel_mode == ParallelMode.DISTRIBUTED}, " | |
f"compute dtype: {str(model_args.compute_dtype)}" | |
) | |
transformers.set_seed(training_args.seed) | |
return model_args, data_args, training_args, finetuning_args, generating_args | |
def get_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS: | |
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args) | |
# Setup logging | |
_set_transformers_logging() | |
# Check arguments | |
if model_args.infer_backend == "vllm": | |
if finetuning_args.stage != "sft": | |
raise ValueError("vLLM engine only supports auto-regressive models.") | |
if model_args.quantization_bit is not None: | |
raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).") | |
if model_args.rope_scaling is not None: | |
raise ValueError("vLLM engine does not support RoPE scaling.") | |
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: | |
raise ValueError("vLLM only accepts a single adapter. Merge them first.") | |
_set_env_vars() | |
_verify_model_args(model_args, data_args, finetuning_args) | |
_check_extra_dependencies(model_args, finetuning_args) | |
# Post-process model arguments | |
if model_args.export_dir is not None and model_args.export_device == "cpu": | |
model_args.device_map = {"": torch.device("cpu")} | |
if data_args.cutoff_len != DataArguments().cutoff_len: # override cutoff_len if it is not default | |
model_args.model_max_length = data_args.cutoff_len | |
else: | |
model_args.device_map = "auto" | |
return model_args, data_args, finetuning_args, generating_args | |
def get_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS: | |
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args) | |
# Setup logging | |
_set_transformers_logging() | |
# Check arguments | |
if model_args.infer_backend != EngineName.HF: | |
raise ValueError("vLLM/SGLang backend is only available for API, CLI and Web.") | |
_set_env_vars() | |
_verify_model_args(model_args, data_args, finetuning_args) | |
_check_extra_dependencies(model_args, finetuning_args) | |
model_args.device_map = "auto" | |
transformers.set_seed(eval_args.seed) | |
return model_args, data_args, eval_args, finetuning_args | |