Spaces:
Running
Running
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's PEFT library. | |
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/peft_model.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import os | |
import socket | |
from typing import TYPE_CHECKING, Any, Literal, Union | |
import torch | |
import torch.distributed as dist | |
import transformers.dynamic_module_utils | |
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList | |
from transformers.dynamic_module_utils import get_relative_imports | |
from transformers.utils import ( | |
is_torch_bf16_gpu_available, | |
is_torch_cuda_available, | |
is_torch_mps_available, | |
is_torch_npu_available, | |
is_torch_xpu_available, | |
) | |
from transformers.utils.versions import require_version | |
from . import logging | |
from .packages import is_transformers_version_greater_than | |
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() | |
try: | |
_is_bf16_available = is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported()) | |
except Exception: | |
_is_bf16_available = False | |
if TYPE_CHECKING: | |
from numpy.typing import NDArray | |
from ..hparams import ModelArguments | |
logger = logging.get_logger(__name__) | |
class AverageMeter: | |
r"""Compute and store the average and current value.""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def check_version(requirement: str, mandatory: bool = False) -> None: | |
r"""Optionally check the package version.""" | |
if is_env_enabled("DISABLE_VERSION_CHECK") and not mandatory: | |
logger.warning_rank0_once("Version checking has been disabled, may lead to unexpected behaviors.") | |
return | |
if mandatory: | |
hint = f"To fix: run `pip install {requirement}`." | |
else: | |
hint = f"To fix: run `pip install {requirement}` or set `DISABLE_VERSION_CHECK=1` to skip this check." | |
require_version(requirement, hint) | |
def check_dependencies() -> None: | |
r"""Check the version of the required packages.""" | |
check_version("transformers>=4.45.0,<=4.51.3,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0") | |
check_version("datasets>=2.16.0,<=3.5.0") | |
check_version("accelerate>=0.34.0,<=1.6.0") | |
check_version("peft>=0.14.0,<=0.15.1") | |
check_version("trl>=0.8.6,<=0.9.6") | |
if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"): | |
logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.") | |
def calculate_tps(dataset: list[dict[str, Any]], metrics: dict[str, float], stage: Literal["sft", "rm"]) -> float: | |
r"""Calculate effective tokens per second.""" | |
effective_token_num = 0 | |
for data in dataset: | |
if stage == "sft": | |
effective_token_num += len(data["input_ids"]) | |
elif stage == "rm": | |
effective_token_num += len(data["chosen_input_ids"]) + len(data["rejected_input_ids"]) | |
result = effective_token_num * metrics["epoch"] / metrics["train_runtime"] | |
return result / dist.get_world_size() if dist.is_initialized() else result | |
def count_parameters(model: "torch.nn.Module") -> tuple[int, int]: | |
r"""Return the number of trainable parameters and number of all parameters in the model.""" | |
trainable_params, all_param = 0, 0 | |
for param in model.parameters(): | |
num_params = param.numel() | |
# if using DS Zero 3 and the weights are initialized empty | |
if num_params == 0 and hasattr(param, "ds_numel"): | |
num_params = param.ds_numel | |
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by itemsize | |
if param.__class__.__name__ == "Params4bit": | |
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"): | |
num_bytes = param.quant_storage.itemsize | |
elif hasattr(param, "element_size"): # for older pytorch version | |
num_bytes = param.element_size() | |
else: | |
num_bytes = 1 | |
num_params = num_params * 2 * num_bytes | |
all_param += num_params | |
if param.requires_grad: | |
trainable_params += num_params | |
return trainable_params, all_param | |
def get_current_device() -> "torch.device": | |
r"""Get the current available device.""" | |
if is_torch_xpu_available(): | |
device = "xpu:{}".format(os.getenv("LOCAL_RANK", "0")) | |
elif is_torch_npu_available(): | |
device = "npu:{}".format(os.getenv("LOCAL_RANK", "0")) | |
elif is_torch_mps_available(): | |
device = "mps:{}".format(os.getenv("LOCAL_RANK", "0")) | |
elif is_torch_cuda_available(): | |
device = "cuda:{}".format(os.getenv("LOCAL_RANK", "0")) | |
else: | |
device = "cpu" | |
return torch.device(device) | |
def get_device_count() -> int: | |
r"""Get the number of available devices.""" | |
if is_torch_xpu_available(): | |
return torch.xpu.device_count() | |
elif is_torch_npu_available(): | |
return torch.npu.device_count() | |
elif is_torch_mps_available(): | |
return torch.mps.device_count() | |
elif is_torch_cuda_available(): | |
return torch.cuda.device_count() | |
else: | |
return 0 | |
def get_logits_processor() -> "LogitsProcessorList": | |
r"""Get logits processor that removes NaN and Inf logits.""" | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InfNanRemoveLogitsProcessor()) | |
return logits_processor | |
def get_peak_memory() -> tuple[int, int]: | |
r"""Get the peak memory usage for the current device (in Bytes).""" | |
if is_torch_xpu_available(): | |
return torch.xpu.max_memory_allocated(), torch.xpu.max_memory_reserved() | |
elif is_torch_npu_available(): | |
return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved() | |
elif is_torch_mps_available(): | |
return torch.mps.current_allocated_memory(), -1 | |
elif is_torch_cuda_available(): | |
return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved() | |
else: | |
return 0, 0 | |
def has_tokenized_data(path: "os.PathLike") -> bool: | |
r"""Check if the path has a tokenized dataset.""" | |
return os.path.isdir(path) and len(os.listdir(path)) > 0 | |
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype": | |
r"""Infer the optimal dtype according to the model_dtype and device compatibility.""" | |
if _is_bf16_available and model_dtype == torch.bfloat16: | |
return torch.bfloat16 | |
elif _is_fp16_available: | |
return torch.float16 | |
else: | |
return torch.float32 | |
def is_accelerator_available() -> bool: | |
r"""Check if the accelerator is available.""" | |
return ( | |
is_torch_xpu_available() or is_torch_npu_available() or is_torch_mps_available() or is_torch_cuda_available() | |
) | |
def is_env_enabled(env_var: str, default: str = "0") -> bool: | |
r"""Check if the environment variable is enabled.""" | |
return os.getenv(env_var, default).lower() in ["true", "y", "1"] | |
def numpify(inputs: Union["NDArray", "torch.Tensor"]) -> "NDArray": | |
r"""Cast a torch tensor or a numpy array to a numpy array.""" | |
if isinstance(inputs, torch.Tensor): | |
inputs = inputs.cpu() | |
if inputs.dtype == torch.bfloat16: # numpy does not support bfloat16 until 1.21.4 | |
inputs = inputs.to(torch.float32) | |
inputs = inputs.numpy() | |
return inputs | |
def skip_check_imports() -> None: | |
r"""Avoid flash attention import error in custom model files.""" | |
if not is_env_enabled("FORCE_CHECK_IMPORTS"): | |
transformers.dynamic_module_utils.check_imports = get_relative_imports | |
def torch_gc() -> None: | |
r"""Collect the device memory.""" | |
gc.collect() | |
if is_torch_xpu_available(): | |
torch.xpu.empty_cache() | |
elif is_torch_npu_available(): | |
torch.npu.empty_cache() | |
elif is_torch_mps_available(): | |
torch.mps.empty_cache() | |
elif is_torch_cuda_available(): | |
torch.cuda.empty_cache() | |
def try_download_model_from_other_hub(model_args: "ModelArguments") -> str: | |
if (not use_modelscope() and not use_openmind()) or os.path.exists(model_args.model_name_or_path): | |
return model_args.model_name_or_path | |
if use_modelscope(): | |
check_version("modelscope>=1.11.0", mandatory=True) | |
from modelscope import snapshot_download # type: ignore | |
revision = "master" if model_args.model_revision == "main" else model_args.model_revision | |
return snapshot_download( | |
model_args.model_name_or_path, | |
revision=revision, | |
cache_dir=model_args.cache_dir, | |
) | |
if use_openmind(): | |
check_version("openmind>=0.8.0", mandatory=True) | |
from openmind.utils.hub import snapshot_download # type: ignore | |
return snapshot_download( | |
model_args.model_name_or_path, | |
revision=model_args.model_revision, | |
cache_dir=model_args.cache_dir, | |
) | |
def use_modelscope() -> bool: | |
return is_env_enabled("USE_MODELSCOPE_HUB") | |
def use_openmind() -> bool: | |
return is_env_enabled("USE_OPENMIND_HUB") | |
def use_ray() -> bool: | |
return is_env_enabled("USE_RAY") | |
def find_available_port() -> int: | |
r"""Find an available port on the local machine.""" | |
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |
sock.bind(("", 0)) | |
port = sock.getsockname()[1] | |
sock.close() | |
return port | |
def fix_proxy(ipv6_enabled: bool = False) -> None: | |
r"""Fix proxy settings for gradio ui.""" | |
os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0" | |
if ipv6_enabled: | |
for name in ("http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY"): | |
os.environ.pop(name, None) | |