Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import defaultdict | |
from typing import TYPE_CHECKING, Any, Optional | |
from ...extras import logging | |
from ..data_utils import Role | |
from .processor_utils import DatasetProcessor, infer_seqlen | |
if TYPE_CHECKING: | |
from ..mm_plugin import AudioInput, ImageInput, VideoInput | |
logger = logging.get_logger(__name__) | |
class UnsupervisedDatasetProcessor(DatasetProcessor): | |
def _encode_data_example( | |
self, | |
prompt: list[dict[str, str]], | |
response: list[dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
images: list["ImageInput"], | |
videos: list["VideoInput"], | |
audios: list["AudioInput"], | |
) -> tuple[list[int], list[int]]: | |
if len(response) == 1: | |
messages = prompt + response | |
else: | |
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] | |
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor) | |
input_ids, labels = self.template.encode_oneturn(self.tokenizer, messages, system, tools) | |
if self.template.efficient_eos: | |
labels += [self.tokenizer.eos_token_id] | |
input_ids, _ = self.template.mm_plugin.process_token_ids( | |
input_ids, None, images, videos, audios, self.tokenizer, self.processor | |
) | |
source_len, target_len = infer_seqlen(len(input_ids), len(labels), self.data_args.cutoff_len) | |
input_ids = input_ids[:source_len] | |
labels = labels[:target_len] | |
return input_ids, labels | |
def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]: | |
# build inputs with format `<bos> X` and labels with format `Y <eos>` | |
model_inputs = defaultdict(list) | |
for i in range(len(examples["_prompt"])): | |
if len(examples["_prompt"][i]) % 2 != 1: | |
logger.warning_rank0( | |
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]) | |
) | |
continue | |
input_ids, labels = self._encode_data_example( | |
prompt=examples["_prompt"][i], | |
response=examples["_response"][i], | |
system=examples["_system"][i], | |
tools=examples["_tools"][i], | |
images=examples["_images"][i] or [], | |
videos=examples["_videos"][i] or [], | |
audios=examples["_audios"][i] or [], | |
) | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
model_inputs["images"].append(examples["_images"][i]) | |
model_inputs["videos"].append(examples["_videos"][i]) | |
model_inputs["audios"].append(examples["_audios"][i]) | |
return model_inputs | |
def print_data_example(self, example: dict[str, list[int]]) -> None: | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
print("label_ids:\n{}".format(example["labels"])) | |
print("labels:\n{}".format(self.tokenizer.decode(example["labels"], skip_special_tokens=False))) | |