ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/processing_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import re
from copy import deepcopy
from dataclasses import dataclass
from io import BytesIO
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
import numpy as np
import torch
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
is_librosa_available,
is_pillow_available,
is_pyav_available,
is_transformers_version_greater_than,
)
if is_librosa_available():
import librosa
if is_pillow_available():
from PIL import Image
from PIL.Image import Image as ImageObject
if is_pyav_available():
import av
if is_transformers_version_greater_than("4.45.0"):
from transformers.models.mllama.processing_mllama import (
convert_sparse_cross_attention_mask_to_dense,
get_cross_attention_token_mask,
)
if is_transformers_version_greater_than("4.49.0"):
from transformers.image_utils import make_batched_videos, make_flat_list_of_images
if TYPE_CHECKING:
from av.stream import Stream
from numpy.typing import NDArray
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BaseImageProcessor
class EncodedImage(TypedDict):
path: Optional[str]
bytes: Optional[bytes]
ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
VideoInput = Union[str, BinaryIO]
AudioInput = Union[str, BinaryIO, NDArray]
class MMProcessor(ProcessorMixin):
patch_size: int
image_seq_length: int
num_additional_image_tokens: int
vision_feature_select_strategy: Literal["default", "full"]
def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
pass
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
r"""Get paligemma token type ids for computing loss.
It is slightly different with the original token type ids where the prompt part is 0.
Returns:
batch_token_type_ids: shape (batch_size, seq_length)
"""
batch_token_type_ids = []
for imglen, seqlen in zip(imglens, seqlens):
image_seqlen = imglen * processor.image_seq_length
batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))
return batch_token_type_ids
def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcessor"):
r"""Get gemma3 token type ids for computing loss.
Returns:
batch_token_type_ids: shape (batch_size, seq_length)
"""
image_token_id: int = getattr(processor, "image_token_id")
batch_token_type_ids = []
for token_ids in batch_ids:
token_ids = np.array(token_ids)
token_type_ids = np.zeros_like(token_ids)
token_type_ids[token_ids == image_token_id] = 1
batch_token_type_ids.append(token_type_ids.tolist())
return batch_token_type_ids
def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
r"""Make nested list of images."""
batch_images = []
for imglen in imglens:
batch_images.append(images[:imglen])
images = images[imglen:]
return batch_images
@dataclass
class MMPluginMixin:
image_token: Optional[str]
video_token: Optional[str]
audio_token: Optional[str]
expand_mm_tokens: bool = True
def _validate_input(
self,
processor: Optional["MMProcessor"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> None:
r"""Validate if this model accepts the input modalities."""
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseImageProcessor = getattr(
processor, "video_processor", getattr(processor, "image_processor", None)
)
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
if len(images) != 0 and self.image_token is None:
raise ValueError(
"This model does not support image input. Please check whether the correct `template` is used."
)
if len(videos) != 0 and self.video_token is None:
raise ValueError(
"This model does not support video input. Please check whether the correct `template` is used."
)
if len(audios) != 0 and self.audio_token is None:
raise ValueError(
"This model does not support audio input. Please check whether the correct `template` is used."
)
if self.image_token is not None and processor is None:
raise ValueError("Processor was not found, please check and update your model file.")
if self.image_token is not None and image_processor is None:
raise ValueError("Image processor was not found, please check and update your model file.")
if self.video_token is not None and video_processor is None:
raise ValueError("Video processor was not found, please check and update your model file.")
if self.audio_token is not None and feature_extractor is None:
raise ValueError("Audio feature extractor was not found, please check and update your model file.")
def _validate_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
):
r"""Validate if the number of images, videos and audios match the number of placeholders in messages."""
num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
for message in messages:
num_image_tokens += message["content"].count(IMAGE_PLACEHOLDER)
num_video_tokens += message["content"].count(VIDEO_PLACEHOLDER)
num_audio_tokens += message["content"].count(AUDIO_PLACEHOLDER)
if len(images) != num_image_tokens:
raise ValueError(
f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens in {messages}."
)
if len(videos) != num_video_tokens:
raise ValueError(
f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens in {messages}."
)
if len(audios) != num_audio_tokens:
raise ValueError(
f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens in {messages}."
)
def _preprocess_image(
self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
) -> "ImageObject":
r"""Pre-process a single image."""
if (image.width * image.height) > image_max_pixels:
resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
image = image.resize((width, height))
if (image.width * image.height) < image_min_pixels:
resize_factor = math.sqrt(image_min_pixels / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
image = image.resize((width, height))
if image.mode != "RGB":
image = image.convert("RGB")
return image
def _get_video_sample_indices(
self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
) -> list[int]:
r"""Compute video sample indices according to fps."""
total_frames = video_stream.frames
if total_frames == 0: # infinite video
return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)
sample_frames = max(1, math.floor(float(video_stream.duration * video_stream.time_base) * video_fps))
sample_frames = min(total_frames, video_maxlen, sample_frames)
return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
r"""Regularize images to avoid error. Including reading and pre-processing."""
results = []
for image in images:
if isinstance(image, (str, BinaryIO)):
image = Image.open(image)
elif isinstance(image, bytes):
image = Image.open(BytesIO(image))
elif isinstance(image, dict):
if image["bytes"] is not None:
image = Image.open(BytesIO(image["bytes"]))
else:
image = Image.open(image["path"])
if not isinstance(image, ImageObject):
raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
results.append(self._preprocess_image(image, **kwargs))
return {"images": results}
def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
results = []
for video in videos:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
frames: list[ImageObject] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
frames.append(frame.to_image())
frames = self._regularize_images(frames, **kwargs)["images"]
results.append(frames)
return {"videos": results}
def _regularize_audios(
self, audios: list["AudioInput"], sampling_rate: float, **kwargs
) -> dict[str, Union[list["NDArray"], list[float]]]:
r"""Regularizes audios to avoid error. Including reading and resampling."""
results, sampling_rates = [], []
for audio in audios:
if isinstance(audio, (str, BinaryIO)):
audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
if not isinstance(audio, np.ndarray):
raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")
results.append(audio)
sampling_rates.append(sampling_rate)
return {"audios": results, "sampling_rates": sampling_rates}
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
imglens: Optional[list[int]] = None,
) -> dict[str, "torch.Tensor"]:
r"""Process visual inputs.
Returns: (llava and paligemma)
pixel_values: tensor with shape (B, C, H, W)
Returns: (qwen2-vl)
pixel_values: tensor with shape (num_patches, patch_dim)
image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
where num_patches == torch.prod(image_grid_thw)
Returns: (mllama)
pixel_values: tensor with shape
(batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
For example, (2, 1, 4, 3, 560, 560).
aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
"""
mm_inputs = {}
if len(images) != 0:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
if imglens is not None: # if imglens are provided, make batched images
images = _make_batched_images(images, imglens)
image_processor_kwargs = {}
if getattr(processor, "image_do_pan_and_scan", False): # gemma3 image processor
image_processor_kwargs.update(
{
"do_pan_and_scan": True,
"pan_and_scan_min_crop_size": 256,
"pan_and_scan_max_num_crops": 4,
"pan_and_scan_min_ratio_to_activate": 1.2,
}
)
mm_inputs.update(image_processor(images, return_tensors="pt", **image_processor_kwargs))
if len(videos) != 0:
video_processor: BaseImageProcessor = getattr(
processor, "video_processor", getattr(processor, "image_processor", None)
)
videos = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)["videos"]
if "videos" in inspect.signature(video_processor.preprocess).parameters: # for qwen2_vl and video_llava
mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt"))
else: # for llava_next_video
mm_inputs.update(video_processor(videos, return_tensors="pt"))
if len(audios) != 0:
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
audios = self._regularize_audios(
audios,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
)["audios"]
mm_inputs.update(
feature_extractor(
audios,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts
return mm_inputs
@dataclass
class BasePlugin(MMPluginMixin):
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
r"""Pre-process input messages before tokenization for VLMs."""
self._validate_input(processor, images, videos, audios)
return messages
def process_token_ids(
self,
input_ids: list[int],
labels: Optional[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
r"""Pre-process token ids after tokenization for VLMs."""
self._validate_input(processor, images, videos, audios)
return input_ids, labels
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
r"""Build batched multimodal inputs for VLMs.
Arguments:
images: a list of image inputs, shape (num_images,)
videos: a list of video inputs, shape (num_videos,)
audios: a list of audio inputs, shape (num_audios,)
imglens: number of images in each sample, shape (batch_size,)
vidlens: number of videos in each sample, shape (batch_size,)
audlens: number of audios in each sample, shape (batch_size,)
batch_ids: token ids of input samples, shape (batch_size, seq_len)
processor: a processor for pre-processing images and videos
"""
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class Gemma3Plugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
boi_token: str = getattr(processor, "boi_token")
full_image_sequence: str = getattr(processor, "full_image_sequence")
image_str = full_image_sequence if self.expand_mm_tokens else boi_token
do_pan_and_scan: bool = getattr(processor, "image_do_pan_and_scan", False)
if do_pan_and_scan:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if do_pan_and_scan:
image_placeholder_str = (
"Here is the original image {{image}} and here are some crops to help you see better "
+ " ".join(["{{image}}"] * mm_inputs["num_crops"][0][num_image_tokens])
)
else:
image_placeholder_str = "{{image}}"
content = content.replace(IMAGE_PLACEHOLDER, image_placeholder_str, 1)
num_image_tokens += 1
message["content"] = content.replace("{{image}}", image_str)
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs.pop("num_crops", None)
mm_inputs["token_type_ids"] = _get_gemma3_token_type_ids(batch_ids, processor)
return mm_inputs
@dataclass
class InternVLPlugin(BasePlugin):
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
image_processor_kwargs = {}
if getattr(processor, "crop_to_patches", False):
image_processor_kwargs.update(
{
"crop_to_patches": True,
"max_patches": 12,
"min_patches": 1,
}
)
mm_inputs = {}
image_video_patches = []
if len(images) != 0 and isinstance(images[0], str):
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 1024 * 1024),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
if len(videos) != 0 and isinstance(videos[0], str):
videos = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)["videos"]
if len(images) != 0:
images = make_flat_list_of_images(images)
image_inputs = image_processor(images=images, return_tensors="pt", **image_processor_kwargs)
image_num_patches = image_inputs.pop("num_patches")
image_pixel_values = image_inputs.pop("pixel_values")
image_num_patches_indices = np.cumsum(image_num_patches)
if len(videos) != 0:
videos = make_batched_videos(videos)
num_frames_per_video = [len(video) for video in videos]
patch_indices = np.cumsum(num_frames_per_video)
image_processor_kwargs["crop_to_patches"] = False
video_inputs = image_processor(images=videos, return_tensors="pt", **image_processor_kwargs)
video_num_patches = video_inputs.pop("num_patches")
video_pixel_values = video_inputs.pop("pixel_values")
video_num_patches_indices = np.cumsum(video_num_patches)
# NOT SUPPORT IMAGE VIDEO INTERLEAVED
if len(images) != 0 and image_pixel_values is not None:
for i in range(len(images)):
start_index = image_num_patches_indices[i - 1] if i > 0 else 0
end_index = image_num_patches_indices[i]
image_video_patches.append(image_pixel_values[start_index:end_index])
if len(videos) != 0 and video_pixel_values is not None:
patch_indices_with_prefix = [0] + list(patch_indices)
for i in range(len(videos)):
current_patch_index = patch_indices_with_prefix[i]
end_patch_index = patch_indices_with_prefix[i + 1]
start_index = video_num_patches_indices[current_patch_index - 1] if i > 0 else 0
end_index = video_num_patches_indices[end_patch_index - 1]
image_video_patches.append(video_pixel_values[start_index:end_index])
if len(images) != 0 or len(videos) != 0:
mm_inputs["pixel_values"] = torch.cat(image_video_patches, dim=0)
if len(images) != 0:
mm_inputs.update({"image_num_patches": image_num_patches})
if len(videos) != 0:
mm_inputs.update({"video_patch_indices": patch_indices})
mm_inputs.update({"video_num_patches": video_num_patches})
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_pixel_patch_list = mm_inputs.get("image_num_patches") # pathes of images
video_num_patches = mm_inputs.get("video_num_patches") # all patches for frames of videos
video_patch_indices = mm_inputs.get("video_patch_indices") # num frames of per video
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(
IMAGE_PLACEHOLDER,
f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
1,
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
end_patch_index = video_patch_indices[num_video_tokens]
num_patches = list(video_num_patches[current_patch_index:end_patch_index])
video_replaced_prompt = "\n".join(
f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
for i in range(len(num_patches))
)
content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
num_video_tokens += 1
message["content"] = content
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["ProcessorMixin"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs.pop("image_num_patches", None)
mm_inputs.pop("video_patch_indices", None)
mm_inputs.pop("video_num_patches", None)
return mm_inputs
class KimiVLPlugin(BasePlugin):
@override
def process_messages(self, messages, images, videos, audios, processor):
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_hws = mm_inputs.get("image_grid_hws", [])
num_image_tokens = 0
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
merge_length = math.prod(image_processor.merge_kernel_size)
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_hws[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER,
f"<|media_start|>image<|media_content|>{self.image_token * image_seqlen}<|media_end|>",
1,
)
num_image_tokens += 1
message["content"] = content
return messages
@dataclass
class Llama4Plugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
num_patches_per_chunk = int(
(image_height // processor.patch_size)
* (image_width // processor.patch_size)
// processor.downsample_ratio
)
aspect_ratios = mm_inputs.pop("aspect_ratios")
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
if self.expand_mm_tokens:
placeholder_count = content.count(IMAGE_PLACEHOLDER)
prompt_splits = content.split(IMAGE_PLACEHOLDER)
new_content = []
for local_image_index, split_part in enumerate(prompt_splits):
new_content.append(split_part)
if local_image_index < placeholder_count:
tokens_for_this_image = processor._prompt_split_image(
aspect_ratios[num_image_tokens], num_patches_per_chunk
)
num_image_tokens += 1
new_content.append(tokens_for_this_image)
content = "".join(new_content)
else:
content = content.replace(IMAGE_PLACEHOLDER, self.image_token)
message["content"] = content
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs.pop("aspect_ratios", None)
return mm_inputs
@dataclass
class LlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
messages = deepcopy(messages)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0]))
image_seqlen = (height // processor.patch_size) * (
width // processor.patch_size
) + processor.num_additional_image_tokens
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
else:
image_seqlen = 1
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
message["content"] = content.replace("{{image}}", self.image_token)
return messages
@dataclass
class LlavaNextPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"].tolist())
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if self.expand_mm_tokens:
orig_height, orig_width = next(image_sizes)
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
else:
image_seqlen = 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
num_image_tokens += 1
message["content"] = content.replace("{{image}}", self.image_token)
return messages
@dataclass
class LlavaNextVideoPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
messages = deepcopy(messages)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"].tolist())
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if self.expand_mm_tokens:
orig_height, orig_width = next(image_sizes)
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
else:
image_seqlen = 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
message["content"] = content.replace("{{image}}", self.image_token)
if self.expand_mm_tokens:
if "pixel_values_videos" in mm_inputs:
one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(one_video[0])
num_frames = one_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
else:
video_seqlen = 1
for message in messages:
content = message["content"]
while VIDEO_PLACEHOLDER in content:
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
message["content"] = content.replace("{{video}}", self.video_token)
return messages
@dataclass
class MiniCPMVPlugin(BasePlugin):
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
**kwargs,
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
if "valid_image_nums_ls" in kwargs:
valid_image_nums_ls = kwargs["valid_image_nums_ls"]
new_images = []
idx = 0
for valid_image_nums in valid_image_nums_ls:
new_images.append(images[idx : idx + valid_image_nums])
idx += valid_image_nums
images = new_images
image_inputs = image_processor(
images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
)
mm_inputs.update(image_inputs)
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)["videos"]
video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
mm_inputs.update(video_inputs)
if len(audios) != 0:
audios = self._regularize_audios(
audios,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
)["audios"]
if "valid_audio_nums_ls" in kwargs:
valid_audio_nums_ls = kwargs["valid_audio_nums_ls"]
audios_ls = []
idx = 0
for valid_audio_nums in valid_audio_nums_ls:
audios_ls.append(audios[idx : idx + valid_audio_nums])
idx += valid_audio_nums
else:
audios_ls = [audios]
audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
audios_ls,
chunk_input=True,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
)
audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
if kwargs.get("ret_phs", False):
mm_inputs.update({"audio_phs": audio_phs})
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
mm_inputs, audio_inputs = {}, {}
if len(images) != 0 and len(videos) != 0:
raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")
if len(videos) != 0:
max_slice_nums = 2
use_image_id = False
mm_inputs = self._get_mm_inputs([], videos, [], processor)
else:
max_slice_nums = image_processor.max_slice_nums
use_image_id = image_processor.use_image_id
for i, message in enumerate(messages):
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1
content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
num_video_tokens += 1
while AUDIO_PLACEHOLDER in content:
content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
num_audio_tokens += 1
message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
"{{audio}}", "(<audio>./</audio>)"
)
if len(images):
mm_inputs = self._get_mm_inputs(images, [], [], processor)
if len(audios):
audio_inputs = self._get_mm_inputs([], [], audios, processor, ret_phs=True)
if self.expand_mm_tokens and mm_inputs:
pattern = "(<image>./</image>)"
image_sizes = mm_inputs["image_sizes"]
idx = 0
for index, message in enumerate(messages):
text = message["content"]
image_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(image_tags)):
final_text = (
final_text
+ text_chunks[i]
+ image_processor.get_slice_image_placeholder(
image_sizes[0][idx], idx, max_slice_nums, use_image_id
)
)
idx += 1
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if self.expand_mm_tokens and audio_inputs:
pattern = "(<audio>./</audio>)"
idx = 0
for index, message in enumerate(messages):
text = message["content"]
audio_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(audio_tags)):
audio_placeholder = audio_inputs["audio_phs"][0][idx]
final_text = final_text + text_chunks[i] + audio_placeholder
idx += 1
final_text += text_chunks[-1]
messages[index]["content"] = final_text
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
# image bound
image_bounds_list = []
valid_image_nums_ls = []
for i, input_ids in enumerate(batch_ids):
input_ids_ = torch.tensor(input_ids)
start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
input_ids_ == processor.tokenizer.slice_start_id
)
end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
valid_image_nums_ls.append(imglens[i])
image_bounds = torch.hstack(
[
image_start_tokens.unsqueeze(-1),
image_end_tokens.unsqueeze(-1),
]
)
image_bounds_list.append(image_bounds)
mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
if "tgt_sizes" not in mm_inputs:
dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})
mm_inputs.update({"image_bound": image_bounds_list})
if len(audios) > 0:
# audio bound
audio_bounds_ls = []
spk_bounds_ls = []
valid_audio_nums_ls = []
for input_ids, audiolen in zip(batch_ids, audlens):
input_ids_ = torch.tensor(input_ids)
audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
assert len(audio_start_idx) == len(audio_end_idx)
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
audio_bounds_ls.append(audio_bounds)
valid_audio_nums_ls.append(audiolen)
spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
assert len(spk_start_idx) == len(spk_end_idx)
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
spk_bounds_ls.append(spk_bounds)
audio_inputs = self._get_mm_inputs([], [], audios, processor, valid_audio_nums_ls=valid_audio_nums_ls)
mm_inputs.update(audio_inputs)
mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})
return mm_inputs
@dataclass
class MllamaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
num_image_tokens += content.count(IMAGE_PLACEHOLDER)
message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token)
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
if mm_inputs:
num_tiles = mm_inputs.pop("num_tiles")
image_token_id: int = getattr(processor, "image_token_id")
max_image_tiles: int = getattr(processor.image_processor, "max_image_tiles")
cross_attention_token_mask = [
get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids
]
mm_inputs["cross_attention_mask"] = torch.from_numpy(
convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask,
num_tiles=num_tiles,
max_num_tiles=max_image_tiles,
length=max(len(input_ids) for input_ids in batch_ids),
)
) # shape: (batch_size, length, max_num_images, max_num_tiles)
return mm_inputs
@dataclass
class PaliGemmaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "", 1)
num_image_tokens += 1
message["content"] = content
return messages
@override
def process_token_ids(
self,
input_ids: list[int],
labels: Optional[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
self._validate_input(processor, images, videos, audios)
num_images = len(images)
image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0 # skip mm token
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
input_ids = [image_token_id] * num_images * image_seqlen + input_ids
if labels is not None:
labels = [IGNORE_INDEX] * num_images * image_seqlen + labels
return input_ids, labels
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
seqlens = [len(input_ids) for input_ids in batch_ids]
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
return mm_inputs
@dataclass
class PixtralPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
messages = deepcopy(messages)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
# BC for transformers < 4.49.0
if isinstance(mm_inputs["image_sizes"], list):
image_sizes = iter(mm_inputs["image_sizes"][0])
else:
image_sizes = iter(mm_inputs["image_sizes"].tolist())
image_break_token: str = getattr(processor, "image_break_token")
image_end_token: str = getattr(processor, "image_end_token")
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if self.expand_mm_tokens:
height, width = next(image_sizes)
num_height_tokens = height // processor.patch_size
num_width_tokens = width // processor.patch_size
replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
replace_tokens = [item for sublist in replace_tokens for item in sublist] # flatten list
replace_tokens[-1] = image_end_token
replace_str = "".join(replace_tokens)
else:
replace_str = self.image_token
content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)
message["content"] = content
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
# ref to this commit https://github.com/huggingface/transformers/pull/35122
# after transformers 4.49.0, the `image_sizes` is mandatory as an input parameter for Pixtral VisionEncoder forwarding.
# it can be passed into `LlavaConditionalGeneration` as a parameter.
if not is_transformers_version_greater_than("4.49.0"):
mm_inputs.pop("image_sizes", None)
return mm_inputs
@dataclass
class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
bos_token: str = getattr(processor, "audio_bos_token")
eos_token: str = getattr(processor, "audio_eos_token")
messages = deepcopy(messages)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs([], [], audios, processor)
if "feature_attention_mask" in mm_inputs:
audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
for message in messages:
content = message["content"]
while AUDIO_PLACEHOLDER in content:
if self.expand_mm_tokens:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
audio_seqlen = (input_length - 2) // 2 + 1
else:
audio_seqlen = 1
content = content.replace(
AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
)
message["content"] = content
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class Qwen2VLPlugin(BasePlugin):
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
image = super()._preprocess_image(image, **kwargs)
if min(image.width, image.height) < 28:
width, height = max(image.width, 28), max(image.height, 28)
image = image.resize((width, height))
if image.width / image.height > 200:
width, height = image.height * 180, image.height
image = image.resize((width, height))
if image.height / image.width > 200:
width, height = image.width, image.width * 180
image = image.resize((width, height))
return image
@override
def _regularize_videos(
self, videos: list["VideoInput"], **kwargs
) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
results, fps_per_video = [], []
for video in videos:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
frames: list[ImageObject] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
frames.append(frame.to_image())
if len(frames) % 2 != 0: # qwen2-vl requires even number of frames
frames.append(frames[-1])
frames = self._regularize_images(frames, **kwargs)["images"]
results.append(frames)
if video_stream.duration is None:
fps_per_video.append(2.0)
else:
fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
return {"videos": results, "fps_per_video": fps_per_video}
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
video_data = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
if "second_per_grid_ts" in processor.model_input_names:
mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
else:
image_grid_thw = [None] * len(images)
video_grid_thw = [None] * len(videos)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
)
num_video_tokens += 1
message["content"] = content
return messages
class Qwen2OmniPlugin(Qwen2VLPlugin):
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
video_dict = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
mm_inputs["video_second_per_grid"] = torch.tensor(
[temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
)
if len(audios) != 0:
audios = self._regularize_audios(
audios,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
)["audios"]
mm_inputs.update(
feature_extractor(
audios,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
merge_length = processor.image_processor.merge_size**2
use_audio_in_video = getattr(processor, "use_audio_in_video", False)
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
if "feature_attention_mask" in mm_inputs:
input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
audio_lengths = (input_lengths - 2) // 2 + 1
else:
mm_inputs = {}
image_grid_thw = [None] * len(images)
video_grid_thw = [None] * len(videos)
audio_lengths = [None] * len(audios)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER, f"<|vision_bos|>{self.image_token * image_seqlen}<|vision_eos|>", 1
)
num_image_tokens += 1
if (
use_audio_in_video and len(audios) and len(videos)
): # if use the audio of video # deal video token and audio token togather
if len(videos) != len(audios):
raise ValueError(
f"Number of videos ({len(videos)}) must match number of audios ({len(audios)}) when using audio in video."
)
while VIDEO_PLACEHOLDER in content:
video_pos = content.find(VIDEO_PLACEHOLDER)
audio_pos = content.find(AUDIO_PLACEHOLDER, video_pos)
if audio_pos == -1 or audio_pos < video_pos:
raise ValueError(
f"Each {VIDEO_PLACEHOLDER} must be followed by an {AUDIO_PLACEHOLDER} when using audio in video."
)
audio_t_index = torch.arange(audio_lengths[num_audio_tokens])
video_t_index = (
torch.arange(video_grid_thw[num_video_tokens][0])
.view(-1, 1, 1)
.expand(
-1,
video_grid_thw[num_video_tokens][1] // image_processor.merge_size,
video_grid_thw[num_video_tokens][2] // image_processor.merge_size,
)
.flatten()
* mm_inputs["video_second_per_grid"][num_video_tokens]
* 25 # FIXME hardcode of position_id_per_seconds=25
).long()
t_ntoken_per_chunk = 50 # FIXME hardcode: [25 * 2]
video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
audio_chunk_indices = processor.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
placeholder_string = ""
placeholder_string += "<|vision_bos|>" + "<|audio_bos|>"
for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
if video_chunk_index is not None:
placeholder_string += self.video_token * (video_chunk_index[1] - video_chunk_index[0])
if audio_chunk_index is not None:
placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])
placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"
content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
content = content.replace(AUDIO_PLACEHOLDER, "", 1)
num_audio_tokens += 1
num_video_tokens += 1
else:
while AUDIO_PLACEHOLDER in content:
audio_seqlen = audio_lengths[num_audio_tokens] if self.expand_mm_tokens else 1
content = content.replace(
AUDIO_PLACEHOLDER, f"<|audio_bos|>{self.audio_token * audio_seqlen}<|audio_eos|>", 1
)
num_audio_tokens += 1
while VIDEO_PLACEHOLDER in content:
video_seqlen = (
video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
)
content = content.replace(
VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_seqlen}<|vision_eos|>", 1
)
num_video_tokens += 1
message["content"] = content
return messages
@dataclass
class VideoLlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
num_frames = 0
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values_images" in mm_inputs:
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values_images"][0]))
num_frames = 1
if "pixel_values_videos" in mm_inputs:
one_video = to_numpy_array(mm_inputs["pixel_values_videos"][0])
height, width = get_image_size(one_video[0])
num_frames = one_video.shape[0] # frame dim is always after batch dim
if "pixel_values_images" in mm_inputs or "pixel_values_videos" in mm_inputs:
image_seqlen = (height // processor.patch_size) * (
width // processor.patch_size
) + processor.num_additional_image_tokens
video_seqlen = image_seqlen * num_frames
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
else:
image_seqlen, video_seqlen = 1, 1
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
num_video_tokens += 1
content = content.replace("{{image}}", self.image_token)
message["content"] = content.replace("{{video}}", self.video_token)
return messages
PLUGINS = {
"base": BasePlugin,
"gemma3": Gemma3Plugin,
"intern_vl": InternVLPlugin,
"kimi_vl": KimiVLPlugin,
"llama4": Llama4Plugin,
"llava": LlavaPlugin,
"llava_next": LlavaNextPlugin,
"llava_next_video": LlavaNextVideoPlugin,
"minicpm_v": MiniCPMVPlugin,
"mllama": MllamaPlugin,
"paligemma": PaliGemmaPlugin,
"pixtral": PixtralPlugin,
"qwen2_audio": Qwen2AudioPlugin,
"qwen2_omni": Qwen2OmniPlugin,
"qwen2_vl": Qwen2VLPlugin,
"video_llava": VideoLlavaPlugin,
}
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
r"""Register a multimodal plugin."""
if name in PLUGINS:
raise ValueError(f"Multimodal plugin {name} already exists.")
PLUGINS[name] = plugin_class
def get_mm_plugin(
name: str,
image_token: Optional[str] = None,
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
) -> "BasePlugin":
r"""Get plugin for multimodal inputs."""
if name not in PLUGINS:
raise ValueError(f"Multimodal plugin `{name}` not found.")
return PLUGINS[name](image_token, video_token, audio_token)