ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from enum import Enum, unique
from typing import Any, Optional, Union
from pydantic import BaseModel, Field
from typing_extensions import Literal
@unique
class Role(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
TOOL = "tool"
@unique
class Finish(str, Enum):
STOP = "stop"
LENGTH = "length"
TOOL = "tool_calls"
class ModelCard(BaseModel):
id: str
object: Literal["model"] = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: Literal["owner"] = "owner"
class ModelList(BaseModel):
object: Literal["list"] = "list"
data: list[ModelCard] = []
class Function(BaseModel):
name: str
arguments: str
class FunctionDefinition(BaseModel):
name: str
description: str
parameters: dict[str, Any]
class FunctionAvailable(BaseModel):
type: Literal["function", "code_interpreter"] = "function"
function: Optional[FunctionDefinition] = None
class FunctionCall(BaseModel):
id: str
type: Literal["function"] = "function"
function: Function
class URL(BaseModel):
url: str
detail: Literal["auto", "low", "high"] = "auto"
class MultimodalInputItem(BaseModel):
type: Literal["text", "image_url", "video_url", "audio_url"]
text: Optional[str] = None
image_url: Optional[URL] = None
video_url: Optional[URL] = None
audio_url: Optional[URL] = None
class ChatMessage(BaseModel):
role: Role
content: Optional[Union[str, list[MultimodalInputItem]]] = None
tool_calls: Optional[list[FunctionCall]] = None
class ChatCompletionMessage(BaseModel):
role: Optional[Role] = None
content: Optional[str] = None
tool_calls: Optional[list[FunctionCall]] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: list[ChatMessage]
tools: Optional[list[FunctionAvailable]] = None
do_sample: Optional[bool] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
n: int = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, list[str]]] = None
stream: bool = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: Finish
class ChatCompletionStreamResponseChoice(BaseModel):
index: int
delta: ChatCompletionMessage
finish_reason: Optional[Finish] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: str
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[ChatCompletionStreamResponseChoice]
class ScoreEvaluationRequest(BaseModel):
model: str
messages: list[str]
max_length: Optional[int] = None
class ScoreEvaluationResponse(BaseModel):
id: str
object: Literal["score.evaluation"] = "score.evaluation"
model: str
scores: list[float]