Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
from typing import Optional | |
import fire | |
from transformers import Seq2SeqTrainingArguments | |
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer | |
from llamafactory.extras.constants import IGNORE_INDEX | |
from llamafactory.extras.misc import get_device_count | |
from llamafactory.extras.packages import is_vllm_available | |
from llamafactory.hparams import get_infer_args | |
from llamafactory.model import load_tokenizer | |
if is_vllm_available(): | |
from vllm import LLM, SamplingParams | |
from vllm.lora.request import LoRARequest | |
def vllm_infer( | |
model_name_or_path: str, | |
adapter_name_or_path: str = None, | |
dataset: str = "alpaca_en_demo", | |
dataset_dir: str = "data", | |
template: str = "default", | |
cutoff_len: int = 2048, | |
max_samples: Optional[int] = None, | |
vllm_config: str = "{}", | |
save_name: str = "generated_predictions.jsonl", | |
temperature: float = 0.95, | |
top_p: float = 0.7, | |
top_k: int = 50, | |
max_new_tokens: int = 1024, | |
repetition_penalty: float = 1.0, | |
skip_special_tokens: bool = True, | |
seed: Optional[int] = None, | |
pipeline_parallel_size: int = 1, | |
image_max_pixels: int = 768 * 768, | |
image_min_pixels: int = 32 * 32, | |
): | |
r"""Perform batch generation using vLLM engine, which supports tensor parallelism. | |
Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo | |
""" | |
if pipeline_parallel_size > get_device_count(): | |
raise ValueError("Pipeline parallel size should be smaller than the number of gpus.") | |
model_args, data_args, _, generating_args = get_infer_args( | |
dict( | |
model_name_or_path=model_name_or_path, | |
adapter_name_or_path=adapter_name_or_path, | |
dataset=dataset, | |
dataset_dir=dataset_dir, | |
template=template, | |
cutoff_len=cutoff_len, | |
max_samples=max_samples, | |
preprocessing_num_workers=16, | |
vllm_config=vllm_config, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty, | |
) | |
) | |
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir") | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args) | |
template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate | |
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module) | |
inputs, prompts, labels = [], [], [] | |
for sample in dataset_module["train_dataset"]: | |
if sample["images"]: | |
multi_modal_data = { | |
"image": template_obj.mm_plugin._regularize_images( | |
sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels | |
)["images"] | |
} | |
elif sample["videos"]: | |
multi_modal_data = { | |
"video": template_obj.mm_plugin._regularize_videos( | |
sample["videos"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels | |
)["videos"] | |
} | |
elif sample["audios"]: | |
audio_data = template_obj.mm_plugin._regularize_audios( | |
sample["audios"], | |
sampling_rate=16000, | |
) | |
multi_modal_data = {"audio": zip(audio_data["audios"], audio_data["sampling_rates"])} | |
else: | |
multi_modal_data = None | |
inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data}) | |
prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=skip_special_tokens)) | |
labels.append( | |
tokenizer.decode( | |
list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=skip_special_tokens | |
) | |
) | |
sampling_params = SamplingParams( | |
repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0 | |
temperature=generating_args.temperature, | |
top_p=generating_args.top_p or 1.0, # top_p must > 0 | |
top_k=generating_args.top_k or -1, # top_k must > 0 | |
stop_token_ids=template_obj.get_stop_token_ids(tokenizer), | |
max_tokens=generating_args.max_new_tokens, | |
skip_special_tokens=skip_special_tokens, | |
seed=seed, | |
) | |
if model_args.adapter_name_or_path is not None: | |
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0]) | |
else: | |
lora_request = None | |
engine_args = { | |
"model": model_args.model_name_or_path, | |
"trust_remote_code": True, | |
"dtype": model_args.infer_dtype, | |
"max_model_len": cutoff_len + max_new_tokens, | |
"tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1, | |
"pipeline_parallel_size": pipeline_parallel_size, | |
"disable_log_stats": True, | |
"enable_lora": model_args.adapter_name_or_path is not None, | |
} | |
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin": | |
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2} | |
if isinstance(model_args.vllm_config, dict): | |
engine_args.update(model_args.vllm_config) | |
results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request) | |
preds = [result.outputs[0].text for result in results] | |
with open(save_name, "w", encoding="utf-8") as f: | |
for text, pred, label in zip(prompts, preds, labels): | |
f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n") | |
print("*" * 70) | |
print(f"{len(prompts)} generated results have been saved at {save_name}.") | |
print("*" * 70) | |
if __name__ == "__main__": | |
fire.Fire(vllm_infer) | |